L(s) = 1 | + (−0.0292 − 0.0505i)5-s + (−1.38 + 2.25i)7-s + (−0.578 − 0.333i)11-s + 2.60i·13-s + (3.62 − 6.28i)17-s + (−4.49 + 2.59i)19-s + (−4.90 + 2.83i)23-s + (2.49 − 4.32i)25-s + 9.41i·29-s + (−4.53 − 2.61i)31-s + (0.154 + 0.00395i)35-s + (−2.32 − 4.01i)37-s + 5.04·41-s − 5.66·43-s + (2.25 + 3.91i)47-s + ⋯ |
L(s) = 1 | + (−0.0130 − 0.0226i)5-s + (−0.521 + 0.852i)7-s + (−0.174 − 0.100i)11-s + 0.722i·13-s + (0.879 − 1.52i)17-s + (−1.03 + 0.595i)19-s + (−1.02 + 0.590i)23-s + (0.499 − 0.865i)25-s + 1.74i·29-s + (−0.814 − 0.470i)31-s + (0.0261 + 0.000668i)35-s + (−0.381 − 0.660i)37-s + 0.787·41-s − 0.864·43-s + (0.329 + 0.570i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.994 + 0.100i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.994 + 0.100i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1769464077\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1769464077\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.38 - 2.25i)T \) |
good | 5 | \( 1 + (0.0292 + 0.0505i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.578 + 0.333i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2.60iT - 13T^{2} \) |
| 17 | \( 1 + (-3.62 + 6.28i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.49 - 2.59i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4.90 - 2.83i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 9.41iT - 29T^{2} \) |
| 31 | \( 1 + (4.53 + 2.61i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.32 + 4.01i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 5.04T + 41T^{2} \) |
| 43 | \( 1 + 5.66T + 43T^{2} \) |
| 47 | \( 1 + (-2.25 - 3.91i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6.72 + 3.88i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.45 + 4.24i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (8.86 - 5.11i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.26 - 3.92i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 10.2iT - 71T^{2} \) |
| 73 | \( 1 + (3.61 + 2.08i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.68 + 8.11i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 7.84T + 83T^{2} \) |
| 89 | \( 1 + (4.29 + 7.44i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 2.33iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.306924876294551881342147613045, −8.814375268498132016849299335981, −7.88217828365453305758153185314, −7.09298557857348400419068802283, −6.24539357969121591467143104031, −5.55047535104132629738779393226, −4.70458898413743554896682515631, −3.61687156383399410120983258692, −2.74538885552301387930165637809, −1.71729386416426199000648583897,
0.05850499546450157654624729779, 1.49232402499877525444609376785, 2.79178753513028591157362362719, 3.76631081430078157608793823794, 4.40700076394072503148670034130, 5.60644202985115418613581378904, 6.26672259514635601203712116404, 7.07636906714611188290118920093, 7.945538671312856510092087586887, 8.436024193769658737503304420287