L(s) = 1 | + (−2.11 − 3.67i)5-s + (−2.57 − 0.604i)7-s + (−4.69 − 2.70i)11-s − 4.28i·13-s + (3.26 − 5.66i)17-s + (−0.653 + 0.377i)19-s + (−3.22 + 1.86i)23-s + (−6.48 + 11.2i)25-s − 4.09i·29-s + (6.17 + 3.56i)31-s + (3.24 + 10.7i)35-s + (−2.90 − 5.02i)37-s + 1.41·41-s + 3.23·43-s + (−2.06 − 3.57i)47-s + ⋯ |
L(s) = 1 | + (−0.947 − 1.64i)5-s + (−0.973 − 0.228i)7-s + (−1.41 − 0.816i)11-s − 1.18i·13-s + (0.792 − 1.37i)17-s + (−0.149 + 0.0865i)19-s + (−0.672 + 0.388i)23-s + (−1.29 + 2.24i)25-s − 0.760i·29-s + (1.10 + 0.640i)31-s + (0.547 + 1.81i)35-s + (−0.477 − 0.826i)37-s + 0.220·41-s + 0.493·43-s + (−0.301 − 0.521i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.407 - 0.913i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.407 - 0.913i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4573543235\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4573543235\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.57 + 0.604i)T \) |
good | 5 | \( 1 + (2.11 + 3.67i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (4.69 + 2.70i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 4.28iT - 13T^{2} \) |
| 17 | \( 1 + (-3.26 + 5.66i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.653 - 0.377i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.22 - 1.86i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 4.09iT - 29T^{2} \) |
| 31 | \( 1 + (-6.17 - 3.56i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.90 + 5.02i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 1.41T + 41T^{2} \) |
| 43 | \( 1 - 3.23T + 43T^{2} \) |
| 47 | \( 1 + (2.06 + 3.57i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.34 - 3.08i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.610 + 1.05i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.08 + 1.77i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.22 - 12.5i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 3.83iT - 71T^{2} \) |
| 73 | \( 1 + (8.39 + 4.84i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.51 + 4.35i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 0.771T + 83T^{2} \) |
| 89 | \( 1 + (-7.04 - 12.2i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 5.12iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.365175216607274631071903624950, −7.86239476669364928793978790636, −7.26061055718890583410235494470, −5.75394944926275407044010249969, −5.41937687857885428736670329111, −4.49854368271836568109085956978, −3.51196174654907561521568236563, −2.77153225286384546177991310346, −0.828305735563600274232633327477, −0.21360356536369298531772298379,
2.16423569413886984887255793267, 2.93255776147166431759302605779, 3.74491711320682005553860645858, 4.54357733144079397933302714703, 5.93268657435704687166614062088, 6.51874550081967822781399483713, 7.22634345838632954428399005109, 7.84120629557644922930929930124, 8.621099277829701819597050176684, 9.926464489616071685863046450348