L(s) = 1 | − 2.50·5-s + (0.893 − 2.49i)7-s − 1.08·11-s + (−0.457 − 0.792i)13-s + (1.39 + 2.41i)17-s + (0.667 − 1.15i)19-s − 6.12·23-s + 1.28·25-s + (−0.414 + 0.718i)29-s + (−1.30 + 2.26i)31-s + (−2.23 + 6.24i)35-s + (3.14 − 5.44i)37-s + (−0.817 − 1.41i)41-s + (0.795 − 1.37i)43-s + (3.29 + 5.70i)47-s + ⋯ |
L(s) = 1 | − 1.12·5-s + (0.337 − 0.941i)7-s − 0.327·11-s + (−0.126 − 0.219i)13-s + (0.337 + 0.585i)17-s + (0.153 − 0.265i)19-s − 1.27·23-s + 0.256·25-s + (−0.0769 + 0.133i)29-s + (−0.234 + 0.406i)31-s + (−0.378 + 1.05i)35-s + (0.517 − 0.895i)37-s + (−0.127 − 0.221i)41-s + (0.121 − 0.210i)43-s + (0.480 + 0.832i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.557 - 0.829i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.557 - 0.829i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3536145535\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3536145535\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.893 + 2.49i)T \) |
good | 5 | \( 1 + 2.50T + 5T^{2} \) |
| 11 | \( 1 + 1.08T + 11T^{2} \) |
| 13 | \( 1 + (0.457 + 0.792i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.39 - 2.41i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.667 + 1.15i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 6.12T + 23T^{2} \) |
| 29 | \( 1 + (0.414 - 0.718i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.30 - 2.26i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.14 + 5.44i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.817 + 1.41i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.795 + 1.37i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.29 - 5.70i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.95 - 6.85i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.53 - 4.39i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.81 - 10.0i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.94 - 13.7i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 9.64T + 71T^{2} \) |
| 73 | \( 1 + (5.03 + 8.72i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.67 - 8.09i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.09 + 7.09i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (6.36 - 11.0i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8.46 - 14.6i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.184301058486061358084117536637, −8.336529385705862194116616087680, −7.57597020352712590607224213948, −7.38227031381559482569807555646, −6.18218443232224231890063672909, −5.27398295611804899744268180811, −4.13929443025000585842919315679, −3.89867357316253207051439962970, −2.64845097019233366059713956328, −1.19491050900845098033074990748,
0.13138584745503660364931726659, 1.85268889120328661262852620142, 2.92059546120728324232137384096, 3.86653610905559766872019740591, 4.72735172917881683673597922356, 5.54669712451927627091217807768, 6.39058139559535943535148348600, 7.46183209025267036914177773984, 7.986648175281610226462423467778, 8.570259207149091711719095641510