L(s) = 1 | + (−0.515 − 0.892i)5-s + (1.55 + 2.14i)7-s + (0.792 − 1.37i)11-s + 5.04·13-s + (−2.58 + 4.47i)17-s + (−0.392 − 0.680i)19-s + (2.93 + 5.07i)23-s + (1.96 − 3.40i)25-s − 8.89·29-s + (0.575 − 0.996i)31-s + (1.10 − 2.49i)35-s + (4.07 + 7.06i)37-s + 7.74·41-s − 2.53·43-s + (−4.24 − 7.35i)47-s + ⋯ |
L(s) = 1 | + (−0.230 − 0.399i)5-s + (0.588 + 0.808i)7-s + (0.239 − 0.414i)11-s + 1.40·13-s + (−0.626 + 1.08i)17-s + (−0.0901 − 0.156i)19-s + (0.611 + 1.05i)23-s + (0.393 − 0.681i)25-s − 1.65·29-s + (0.103 − 0.179i)31-s + (0.187 − 0.421i)35-s + (0.670 + 1.16i)37-s + 1.20·41-s − 0.386·43-s + (−0.619 − 1.07i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.844 - 0.535i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.844 - 0.535i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.908003036\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.908003036\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.55 - 2.14i)T \) |
good | 5 | \( 1 + (0.515 + 0.892i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.792 + 1.37i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.04T + 13T^{2} \) |
| 17 | \( 1 + (2.58 - 4.47i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.392 + 0.680i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.93 - 5.07i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 8.89T + 29T^{2} \) |
| 31 | \( 1 + (-0.575 + 0.996i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.07 - 7.06i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 7.74T + 41T^{2} \) |
| 43 | \( 1 + 2.53T + 43T^{2} \) |
| 47 | \( 1 + (4.24 + 7.35i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.41 + 4.17i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.93 - 3.35i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.82 - 8.35i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.837 + 1.45i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 14.2T + 71T^{2} \) |
| 73 | \( 1 + (-3.04 + 5.27i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.15 - 7.19i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 14.2T + 83T^{2} \) |
| 89 | \( 1 + (-6.69 - 11.5i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 5.34T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.846093364212180441947132796297, −8.473270095637424771660619298311, −7.79030617914873383745525652228, −6.60972383627698826105933698390, −5.92765999176495396917769713924, −5.21100928562871021278631020925, −4.18498669092835083867123276793, −3.44842166426036817480466246824, −2.14072803585353188156902097207, −1.13392656476277885499321753616,
0.793988881151274357379651167635, 2.01132677962845488735823373440, 3.26060416373022423863536772170, 4.09395327723802555495213896732, 4.81367037133698957687980373500, 5.87646114243807378160216137169, 6.80466633345931104526255415261, 7.33201142506870573745054120130, 8.107906159227119558672753023284, 8.995907149899419871963883868335