L(s) = 1 | + (0.5 − 2.59i)7-s + (4.5 − 2.59i)13-s + (−7.5 − 4.33i)19-s − 5·25-s + (1.5 + 0.866i)31-s + (5.5 − 9.52i)37-s + (−6.5 + 11.2i)43-s + (−6.5 − 2.59i)49-s + (6 − 3.46i)61-s + (−2.5 + 4.33i)67-s + (−1.5 + 0.866i)73-s + (−8.5 − 14.7i)79-s + (−4.5 − 12.9i)91-s + (−12 − 6.92i)97-s − 15.5i·103-s + ⋯ |
L(s) = 1 | + (0.188 − 0.981i)7-s + (1.24 − 0.720i)13-s + (−1.72 − 0.993i)19-s − 25-s + (0.269 + 0.155i)31-s + (0.904 − 1.56i)37-s + (−0.991 + 1.71i)43-s + (−0.928 − 0.371i)49-s + (0.768 − 0.443i)61-s + (−0.305 + 0.529i)67-s + (−0.175 + 0.101i)73-s + (−0.956 − 1.65i)79-s + (−0.471 − 1.36i)91-s + (−1.21 − 0.703i)97-s − 1.53i·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.471 + 0.881i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.471 + 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.302108621\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.302108621\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 2.59i)T \) |
good | 5 | \( 1 + 5T^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + (-4.5 + 2.59i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (7.5 + 4.33i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.5 - 0.866i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.5 + 9.52i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (6.5 - 11.2i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6 + 3.46i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.5 - 4.33i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (1.5 - 0.866i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (8.5 + 14.7i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (12 + 6.92i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.591136329343221754299480144843, −8.101643497405402838011373242662, −7.23374981002689541370255697442, −6.41894647877747878393988748706, −5.74894934170125048554235184319, −4.54282694794454783308357518015, −3.99835713751433763451568869440, −2.96732789724893050138109219792, −1.69743194326007219384634241561, −0.44082767595949334476307539968,
1.55344476624675286745246121697, 2.37998353963323020581031477000, 3.65301764510918033427104555916, 4.35629924131211705834691894046, 5.46854253744808558117497816264, 6.18706164906192565972816374562, 6.71330736461364241783891291740, 8.084623541462540238303941578809, 8.408645743331234944141388432961, 9.140531662285794971500046615681