L(s) = 1 | + (−2.5 + 0.866i)7-s + (1.5 − 0.866i)13-s + (3 + 1.73i)19-s − 5·25-s + (1.5 + 0.866i)31-s + (−0.5 + 0.866i)37-s + (−6.5 + 11.2i)43-s + (5.5 − 4.33i)49-s + (−13.5 + 7.79i)61-s + (−5.5 + 9.52i)67-s + (−12 + 6.92i)73-s + (6.5 + 11.2i)79-s + (−3 + 3.46i)91-s + (−4.5 − 2.59i)97-s + 19.0i·103-s + ⋯ |
L(s) = 1 | + (−0.944 + 0.327i)7-s + (0.416 − 0.240i)13-s + (0.688 + 0.397i)19-s − 25-s + (0.269 + 0.155i)31-s + (−0.0821 + 0.142i)37-s + (−0.991 + 1.71i)43-s + (0.785 − 0.618i)49-s + (−1.72 + 0.997i)61-s + (−0.671 + 1.16i)67-s + (−1.40 + 0.810i)73-s + (0.731 + 1.26i)79-s + (−0.314 + 0.363i)91-s + (−0.456 − 0.263i)97-s + 1.87i·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.527 - 0.849i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.527 - 0.849i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8202770307\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8202770307\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.5 - 0.866i)T \) |
good | 5 | \( 1 + 5T^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + (-1.5 + 0.866i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 - 1.73i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.5 - 0.866i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (6.5 - 11.2i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (13.5 - 7.79i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.5 - 9.52i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (12 - 6.92i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.5 - 11.2i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (4.5 + 2.59i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.388864325818333886960166776184, −8.516716471578055284606641674931, −7.78355752262482640852595879017, −6.90960688753177451043535748898, −6.09330162027382121480573330436, −5.53710870705810893910005476387, −4.39703787894456168822371796383, −3.44504170752310122390882633560, −2.70920893319427508277864287185, −1.33788737859811181903933735626,
0.28747563188217364963795253239, 1.76466625430330174180520404698, 3.04395739920776348433477450468, 3.73698883087402149560727063572, 4.70675584954683724076283224140, 5.73974845059926819904398224485, 6.42051192266612408718541967302, 7.20010452094821171349411770737, 7.906448417093133968886173049897, 8.930719900438780983262154241068