L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s + (0.965 + 1.67i)11-s + (−0.258 + 0.965i)14-s − 1.00·16-s + (−1.86 − 0.5i)22-s + (0.707 − 1.22i)23-s + (0.5 + 0.866i)25-s + (−0.500 − 0.866i)28-s + (−1.22 + 0.707i)29-s + (0.707 − 0.707i)32-s − 1.73·37-s + (0.866 − 0.5i)43-s + (1.67 − 0.965i)44-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.866 − 0.5i)7-s + (0.707 + 0.707i)8-s + (0.965 + 1.67i)11-s + (−0.258 + 0.965i)14-s − 1.00·16-s + (−1.86 − 0.5i)22-s + (0.707 − 1.22i)23-s + (0.5 + 0.866i)25-s + (−0.500 − 0.866i)28-s + (−1.22 + 0.707i)29-s + (0.707 − 0.707i)32-s − 1.73·37-s + (0.866 − 0.5i)43-s + (1.67 − 0.965i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.573 - 0.819i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.573 - 0.819i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9704076644\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9704076644\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
good | 5 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.965 - 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + 1.73T + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - 0.517iT - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + 0.517T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.093464765676589296825774786874, −8.704230045300601227377264857827, −7.56658046062529934061080699664, −7.15479298353403202191558312846, −6.57336421719641624607398163552, −5.31070338317774423776572101999, −4.76138114368692506796923807707, −3.87646643072053735821346212892, −2.11920904995409106692095585535, −1.30387920037482817024666121433,
1.03987831694922271318534620367, 2.08426943043975678766304158289, 3.24172750324410946793415488635, 3.91389786416576531500515034506, 5.08217087497700227930657947114, 5.97751302020872240907509843167, 6.93691323042475970510791705131, 7.87427737988619648268124647154, 8.494979607633772298621692127166, 9.050444836704433715711023602623