Properties

Label 2-15e2-3.2-c8-0-17
Degree $2$
Conductor $225$
Sign $-0.577 - 0.816i$
Analytic cond. $91.6601$
Root an. cond. $9.57393$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.31i·2-s + 202.·4-s + 3.66e3·7-s + 3.35e3i·8-s − 1.32e4i·11-s − 2.16e4·13-s + 2.67e4i·14-s + 2.73e4·16-s + 1.17e5i·17-s − 2.55e5·19-s + 9.69e4·22-s + 4.21e5i·23-s − 1.58e5i·26-s + 7.41e5·28-s + 6.10e5i·29-s + ⋯
L(s)  = 1  + 0.457i·2-s + 0.791·4-s + 1.52·7-s + 0.818i·8-s − 0.905i·11-s − 0.756·13-s + 0.697i·14-s + 0.416·16-s + 1.40i·17-s − 1.96·19-s + 0.414·22-s + 1.50i·23-s − 0.345i·26-s + 1.20·28-s + 0.863i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.577 - 0.816i$
Analytic conductor: \(91.6601\)
Root analytic conductor: \(9.57393\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (26, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :4),\ -0.577 - 0.816i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(2.467733722\)
\(L(\frac12)\) \(\approx\) \(2.467733722\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - 7.31iT - 256T^{2} \)
7 \( 1 - 3.66e3T + 5.76e6T^{2} \)
11 \( 1 + 1.32e4iT - 2.14e8T^{2} \)
13 \( 1 + 2.16e4T + 8.15e8T^{2} \)
17 \( 1 - 1.17e5iT - 6.97e9T^{2} \)
19 \( 1 + 2.55e5T + 1.69e10T^{2} \)
23 \( 1 - 4.21e5iT - 7.83e10T^{2} \)
29 \( 1 - 6.10e5iT - 5.00e11T^{2} \)
31 \( 1 + 9.80e5T + 8.52e11T^{2} \)
37 \( 1 + 3.00e5T + 3.51e12T^{2} \)
41 \( 1 + 1.06e6iT - 7.98e12T^{2} \)
43 \( 1 - 1.60e6T + 1.16e13T^{2} \)
47 \( 1 - 7.57e5iT - 2.38e13T^{2} \)
53 \( 1 - 3.30e6iT - 6.22e13T^{2} \)
59 \( 1 - 2.09e7iT - 1.46e14T^{2} \)
61 \( 1 - 2.16e7T + 1.91e14T^{2} \)
67 \( 1 - 1.46e7T + 4.06e14T^{2} \)
71 \( 1 + 1.44e7iT - 6.45e14T^{2} \)
73 \( 1 + 2.16e7T + 8.06e14T^{2} \)
79 \( 1 - 4.05e7T + 1.51e15T^{2} \)
83 \( 1 - 4.84e7iT - 2.25e15T^{2} \)
89 \( 1 + 3.57e7iT - 3.93e15T^{2} \)
97 \( 1 - 6.01e7T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.99203419285273561210788318302, −10.58657120339881528649053488556, −8.788896847534650334210504535284, −8.100533676462728116716728337735, −7.24149096992548090724248584841, −6.03372389122263212534419692485, −5.20415086465459817172106175312, −3.85318656551523089780068034711, −2.24524277295708553630349797813, −1.44315376023335746282438317402, 0.47423763267497606008745867192, 1.96721858960230044982169595463, 2.40025529579395179064015570919, 4.22133656774521707097911621014, 5.04957807464713061007033607428, 6.58987572033885359898719803814, 7.43888582887554580793784616922, 8.398206050112833577395134884751, 9.720223852507551186095045781489, 10.67200774961078738025763679397

Graph of the $Z$-function along the critical line