Properties

Label 2-15e2-3.2-c8-0-7
Degree $2$
Conductor $225$
Sign $-0.577 + 0.816i$
Analytic cond. $91.6601$
Root an. cond. $9.57393$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 31.8i·2-s − 758.·4-s + 1.91e3·7-s − 1.60e4i·8-s − 1.81e4i·11-s − 1.87e4·13-s + 6.10e4i·14-s + 3.15e5·16-s − 8.30e4i·17-s + 3.32e4·19-s + 5.79e5·22-s − 1.14e5i·23-s − 5.96e5i·26-s − 1.45e6·28-s + 7.60e5i·29-s + ⋯
L(s)  = 1  + 1.99i·2-s − 2.96·4-s + 0.798·7-s − 3.90i·8-s − 1.24i·11-s − 0.655·13-s + 1.58i·14-s + 4.81·16-s − 0.993i·17-s + 0.254·19-s + 2.47·22-s − 0.410i·23-s − 1.30i·26-s − 2.36·28-s + 1.07i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.577 + 0.816i$
Analytic conductor: \(91.6601\)
Root analytic conductor: \(9.57393\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (26, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :4),\ -0.577 + 0.816i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.7268201227\)
\(L(\frac12)\) \(\approx\) \(0.7268201227\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - 31.8iT - 256T^{2} \)
7 \( 1 - 1.91e3T + 5.76e6T^{2} \)
11 \( 1 + 1.81e4iT - 2.14e8T^{2} \)
13 \( 1 + 1.87e4T + 8.15e8T^{2} \)
17 \( 1 + 8.30e4iT - 6.97e9T^{2} \)
19 \( 1 - 3.32e4T + 1.69e10T^{2} \)
23 \( 1 + 1.14e5iT - 7.83e10T^{2} \)
29 \( 1 - 7.60e5iT - 5.00e11T^{2} \)
31 \( 1 + 8.34e5T + 8.52e11T^{2} \)
37 \( 1 + 1.03e6T + 3.51e12T^{2} \)
41 \( 1 - 5.38e6iT - 7.98e12T^{2} \)
43 \( 1 + 3.56e6T + 1.16e13T^{2} \)
47 \( 1 - 1.25e6iT - 2.38e13T^{2} \)
53 \( 1 + 6.58e6iT - 6.22e13T^{2} \)
59 \( 1 - 8.31e6iT - 1.46e14T^{2} \)
61 \( 1 - 1.71e7T + 1.91e14T^{2} \)
67 \( 1 + 9.49e6T + 4.06e14T^{2} \)
71 \( 1 - 2.26e7iT - 6.45e14T^{2} \)
73 \( 1 - 1.85e7T + 8.06e14T^{2} \)
79 \( 1 + 3.77e6T + 1.51e15T^{2} \)
83 \( 1 + 5.83e6iT - 2.25e15T^{2} \)
89 \( 1 - 2.20e7iT - 3.93e15T^{2} \)
97 \( 1 - 6.94e7T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44400809325721310589262833716, −10.02723012772066769722778981669, −8.990300371714708496376295948853, −8.268775075725048388284225775741, −7.41518514254978715841571715711, −6.50735998019419976299412478067, −5.35867070969925306165262066630, −4.79120222279556847368087362499, −3.38882900086221834010475290911, −0.956259383947528105566919167283, 0.20002310269687040782679068270, 1.64763530351394574766222429756, 2.16702833255920544436528790409, 3.61826638169239401013612107126, 4.54869282521349195862800524739, 5.40220180829392690283019328603, 7.56863880064018663119895854375, 8.580649719658786834729503669989, 9.605589010114312935228599229715, 10.28749476912988517771168219921

Graph of the $Z$-function along the critical line