Properties

Label 2-15e2-15.14-c4-0-7
Degree $2$
Conductor $225$
Sign $0.881 - 0.472i$
Analytic cond. $23.2582$
Root an. cond. $4.82267$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.40·2-s + 13.2·4-s − 16.7i·7-s + 15.1·8-s + 193. i·11-s − 222. i·13-s + 90.3i·14-s − 292.·16-s − 87.8·17-s + 477.·19-s − 1.04e3i·22-s − 627.·23-s + 1.20e3i·26-s − 220. i·28-s − 204. i·29-s + ⋯
L(s)  = 1  − 1.35·2-s + 0.825·4-s − 0.341i·7-s + 0.236·8-s + 1.60i·11-s − 1.31i·13-s + 0.461i·14-s − 1.14·16-s − 0.304·17-s + 1.32·19-s − 2.16i·22-s − 1.18·23-s + 1.77i·26-s − 0.281i·28-s − 0.243i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 - 0.472i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.881 - 0.472i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $0.881 - 0.472i$
Analytic conductor: \(23.2582\)
Root analytic conductor: \(4.82267\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (224, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :2),\ 0.881 - 0.472i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.7803752934\)
\(L(\frac12)\) \(\approx\) \(0.7803752934\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 5.40T + 16T^{2} \)
7 \( 1 + 16.7iT - 2.40e3T^{2} \)
11 \( 1 - 193. iT - 1.46e4T^{2} \)
13 \( 1 + 222. iT - 2.85e4T^{2} \)
17 \( 1 + 87.8T + 8.35e4T^{2} \)
19 \( 1 - 477.T + 1.30e5T^{2} \)
23 \( 1 + 627.T + 2.79e5T^{2} \)
29 \( 1 + 204. iT - 7.07e5T^{2} \)
31 \( 1 + 1.19e3T + 9.23e5T^{2} \)
37 \( 1 + 1.38e3iT - 1.87e6T^{2} \)
41 \( 1 - 1.31e3iT - 2.82e6T^{2} \)
43 \( 1 - 1.49e3iT - 3.41e6T^{2} \)
47 \( 1 - 2.94e3T + 4.87e6T^{2} \)
53 \( 1 - 3.95e3T + 7.89e6T^{2} \)
59 \( 1 - 3.17e3iT - 1.21e7T^{2} \)
61 \( 1 - 6.29e3T + 1.38e7T^{2} \)
67 \( 1 - 7.86e3iT - 2.01e7T^{2} \)
71 \( 1 - 1.16e3iT - 2.54e7T^{2} \)
73 \( 1 - 5.09e3iT - 2.83e7T^{2} \)
79 \( 1 - 5.20e3T + 3.89e7T^{2} \)
83 \( 1 - 3.13e3T + 4.74e7T^{2} \)
89 \( 1 + 1.36e4iT - 6.27e7T^{2} \)
97 \( 1 - 2.07e3iT - 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.37076541153719625903151144877, −10.21229784721382995077730712271, −9.882661583322743274049837976904, −8.788926833111949996889872147121, −7.60202388614834058390144914085, −7.24037018622236361752733523688, −5.52151255063697425303116224724, −4.12594836016285084088658368089, −2.25754962255032597620300559656, −0.845099083969140550004914210735, 0.61103461586649896674823298375, 2.04382771808994104705931895532, 3.77130163445004637445901348497, 5.44950264655934384653143949589, 6.70151217867868463244435743818, 7.77938702475127651835819797918, 8.789715846306542231537222626286, 9.271169324058482418417116107385, 10.41226709812686684700646801912, 11.30787409120048014726829750290

Graph of the $Z$-function along the critical line