L(s) = 1 | − 5.40·2-s + 13.2·4-s − 16.7i·7-s + 15.1·8-s + 193. i·11-s − 222. i·13-s + 90.3i·14-s − 292.·16-s − 87.8·17-s + 477.·19-s − 1.04e3i·22-s − 627.·23-s + 1.20e3i·26-s − 220. i·28-s − 204. i·29-s + ⋯ |
L(s) = 1 | − 1.35·2-s + 0.825·4-s − 0.341i·7-s + 0.236·8-s + 1.60i·11-s − 1.31i·13-s + 0.461i·14-s − 1.14·16-s − 0.304·17-s + 1.32·19-s − 2.16i·22-s − 1.18·23-s + 1.77i·26-s − 0.281i·28-s − 0.243i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 - 0.472i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.881 - 0.472i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.7803752934\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7803752934\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + 5.40T + 16T^{2} \) |
| 7 | \( 1 + 16.7iT - 2.40e3T^{2} \) |
| 11 | \( 1 - 193. iT - 1.46e4T^{2} \) |
| 13 | \( 1 + 222. iT - 2.85e4T^{2} \) |
| 17 | \( 1 + 87.8T + 8.35e4T^{2} \) |
| 19 | \( 1 - 477.T + 1.30e5T^{2} \) |
| 23 | \( 1 + 627.T + 2.79e5T^{2} \) |
| 29 | \( 1 + 204. iT - 7.07e5T^{2} \) |
| 31 | \( 1 + 1.19e3T + 9.23e5T^{2} \) |
| 37 | \( 1 + 1.38e3iT - 1.87e6T^{2} \) |
| 41 | \( 1 - 1.31e3iT - 2.82e6T^{2} \) |
| 43 | \( 1 - 1.49e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 - 2.94e3T + 4.87e6T^{2} \) |
| 53 | \( 1 - 3.95e3T + 7.89e6T^{2} \) |
| 59 | \( 1 - 3.17e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 - 6.29e3T + 1.38e7T^{2} \) |
| 67 | \( 1 - 7.86e3iT - 2.01e7T^{2} \) |
| 71 | \( 1 - 1.16e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 - 5.09e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 5.20e3T + 3.89e7T^{2} \) |
| 83 | \( 1 - 3.13e3T + 4.74e7T^{2} \) |
| 89 | \( 1 + 1.36e4iT - 6.27e7T^{2} \) |
| 97 | \( 1 - 2.07e3iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.37076541153719625903151144877, −10.21229784721382995077730712271, −9.882661583322743274049837976904, −8.788926833111949996889872147121, −7.60202388614834058390144914085, −7.24037018622236361752733523688, −5.52151255063697425303116224724, −4.12594836016285084088658368089, −2.25754962255032597620300559656, −0.845099083969140550004914210735,
0.61103461586649896674823298375, 2.04382771808994104705931895532, 3.77130163445004637445901348497, 5.44950264655934384653143949589, 6.70151217867868463244435743818, 7.77938702475127651835819797918, 8.789715846306542231537222626286, 9.271169324058482418417116107385, 10.41226709812686684700646801912, 11.30787409120048014726829750290