L(s) = 1 | + (4.66 + 2.69i)2-s + (−3.19 − 4.09i)3-s + (10.4 + 18.1i)4-s + (−3.88 − 27.7i)6-s + (10.8 + 6.28i)7-s + 69.9i·8-s + (−6.54 + 26.1i)9-s + (−6.41 + 11.1i)11-s + (40.9 − 101. i)12-s + (51.8 − 29.9i)13-s + (33.8 + 58.6i)14-s + (−104. + 180. i)16-s + 110. i·17-s + (−101. + 104. i)18-s + 12.0·19-s + ⋯ |
L(s) = 1 | + (1.64 + 0.951i)2-s + (−0.615 − 0.788i)3-s + (1.31 + 2.27i)4-s + (−0.264 − 1.88i)6-s + (0.587 + 0.339i)7-s + 3.09i·8-s + (−0.242 + 0.970i)9-s + (−0.175 + 0.304i)11-s + (0.983 − 2.43i)12-s + (1.10 − 0.638i)13-s + (0.646 + 1.11i)14-s + (−1.63 + 2.82i)16-s + 1.56i·17-s + (−1.32 + 1.36i)18-s + 0.145·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0441 - 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.0441 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.70559 + 2.82791i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.70559 + 2.82791i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (3.19 + 4.09i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-4.66 - 2.69i)T + (4 + 6.92i)T^{2} \) |
| 7 | \( 1 + (-10.8 - 6.28i)T + (171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (6.41 - 11.1i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-51.8 + 29.9i)T + (1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 - 110. iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 12.0T + 6.85e3T^{2} \) |
| 23 | \( 1 + (58.6 - 33.8i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-99.9 + 173. i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (38.3 + 66.3i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 - 22.4iT - 5.06e4T^{2} \) |
| 41 | \( 1 + (43.8 + 76.0i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (103. + 59.7i)T + (3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-210. - 121. i)T + (5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + 293. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + (290. + 503. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-386. + 670. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-200. + 115. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 744.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 264. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + (-279. + 484. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-1.05e3 - 610. i)T + (2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 255.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-908. - 524. i)T + (4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.34797271533952836262151248123, −11.57924457187387977933601722330, −10.67182796372305389318488737612, −8.247937002374165728587050158715, −7.87015137346418844391097450946, −6.50904009509035039719406188485, −5.90037222881453551584392068003, −4.99599659841418271992432997891, −3.71280751931013118822700388947, −2.03355772655765158931631844952,
1.14085396621587657357142018614, 2.98960545141889018541685446747, 4.11977624542888155208780197943, 4.91551708253592536422679937685, 5.84388330820345723433673553486, 6.91717894264332111146164120862, 9.009501794261492204860789278487, 10.22328029601199262998722188470, 10.94383361509448362261835800187, 11.57888963637023727383804242535