Properties

Label 2-15e2-25.8-c2-0-13
Degree $2$
Conductor $225$
Sign $-0.291 + 0.956i$
Analytic cond. $6.13080$
Root an. cond. $2.47604$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.93 − 1.49i)2-s + (4.01 + 5.52i)4-s + (0.890 − 4.91i)5-s + (4.34 − 4.34i)7-s + (−1.45 − 9.19i)8-s + (−9.96 + 13.0i)10-s + (4.51 + 13.8i)11-s + (6.86 − 3.49i)13-s + (−19.2 + 6.24i)14-s + (−1.02 + 3.14i)16-s + (25.6 − 4.06i)17-s + (−1.24 + 1.70i)19-s + (30.7 − 14.8i)20-s + (7.51 − 47.4i)22-s + (2.15 − 4.22i)23-s + ⋯
L(s)  = 1  + (−1.46 − 0.746i)2-s + (1.00 + 1.38i)4-s + (0.178 − 0.983i)5-s + (0.620 − 0.620i)7-s + (−0.181 − 1.14i)8-s + (−0.996 + 1.30i)10-s + (0.410 + 1.26i)11-s + (0.528 − 0.269i)13-s + (−1.37 + 0.446i)14-s + (−0.0638 + 0.196i)16-s + (1.50 − 0.238i)17-s + (−0.0653 + 0.0899i)19-s + (1.53 − 0.741i)20-s + (0.341 − 2.15i)22-s + (0.0936 − 0.183i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.291 + 0.956i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.291 + 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.291 + 0.956i$
Analytic conductor: \(6.13080\)
Root analytic conductor: \(2.47604\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (208, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1),\ -0.291 + 0.956i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.502940 - 0.678798i\)
\(L(\frac12)\) \(\approx\) \(0.502940 - 0.678798i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-0.890 + 4.91i)T \)
good2 \( 1 + (2.93 + 1.49i)T + (2.35 + 3.23i)T^{2} \)
7 \( 1 + (-4.34 + 4.34i)T - 49iT^{2} \)
11 \( 1 + (-4.51 - 13.8i)T + (-97.8 + 71.1i)T^{2} \)
13 \( 1 + (-6.86 + 3.49i)T + (99.3 - 136. i)T^{2} \)
17 \( 1 + (-25.6 + 4.06i)T + (274. - 89.3i)T^{2} \)
19 \( 1 + (1.24 - 1.70i)T + (-111. - 343. i)T^{2} \)
23 \( 1 + (-2.15 + 4.22i)T + (-310. - 427. i)T^{2} \)
29 \( 1 + (32.6 + 44.9i)T + (-259. + 799. i)T^{2} \)
31 \( 1 + (-27.1 - 19.7i)T + (296. + 913. i)T^{2} \)
37 \( 1 + (18.7 + 36.7i)T + (-804. + 1.10e3i)T^{2} \)
41 \( 1 + (-1.20 + 3.71i)T + (-1.35e3 - 988. i)T^{2} \)
43 \( 1 + (32.8 + 32.8i)T + 1.84e3iT^{2} \)
47 \( 1 + (-12.8 + 81.3i)T + (-2.10e3 - 682. i)T^{2} \)
53 \( 1 + (-81.1 - 12.8i)T + (2.67e3 + 868. i)T^{2} \)
59 \( 1 + (-10.7 - 3.47i)T + (2.81e3 + 2.04e3i)T^{2} \)
61 \( 1 + (9.84 + 30.3i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 + (0.351 - 0.0556i)T + (4.26e3 - 1.38e3i)T^{2} \)
71 \( 1 + (88.5 - 64.3i)T + (1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (20.1 - 39.4i)T + (-3.13e3 - 4.31e3i)T^{2} \)
79 \( 1 + (-33.1 - 45.6i)T + (-1.92e3 + 5.93e3i)T^{2} \)
83 \( 1 + (-2.71 - 17.1i)T + (-6.55e3 + 2.12e3i)T^{2} \)
89 \( 1 + (-85.2 + 27.7i)T + (6.40e3 - 4.65e3i)T^{2} \)
97 \( 1 + (-1.37 + 8.70i)T + (-8.94e3 - 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.72983723032596651665490155912, −10.40719485062878194831400247092, −9.873593317615329417346187705196, −8.913186593894417629068437617379, −8.019163835340047000646705578078, −7.24788229735334478151314271115, −5.37096210593424966471623822617, −3.95452279761355536186516770377, −1.95470749811779147512074858186, −0.869701290023706786294430668657, 1.41992457062934944798777449207, 3.31081098746085985408727464157, 5.64890541257571459236999722489, 6.37144347254091468186054851536, 7.51662932758457342365029936333, 8.359957636854416136598679945272, 9.175042798168438670629132160815, 10.22240795205427790328902636681, 11.04106611129768713878576454426, 11.80941875640266889639852879512

Graph of the $Z$-function along the critical line