Properties

Label 2-15e2-225.166-c1-0-10
Degree $2$
Conductor $225$
Sign $-0.117 - 0.993i$
Analytic cond. $1.79663$
Root an. cond. $1.34038$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0944 + 0.898i)2-s + (1.34 + 1.08i)3-s + (1.15 + 0.246i)4-s + (−0.280 + 2.21i)5-s + (−1.10 + 1.10i)6-s + (−1.53 − 2.65i)7-s + (−0.888 + 2.73i)8-s + (0.642 + 2.93i)9-s + (−1.96 − 0.461i)10-s + (0.137 − 1.30i)11-s + (1.29 + 1.58i)12-s + (−0.522 − 4.96i)13-s + (2.52 − 1.12i)14-s + (−2.78 + 2.68i)15-s + (−0.210 − 0.0937i)16-s + (1.36 − 4.18i)17-s + ⋯
L(s)  = 1  + (−0.0667 + 0.635i)2-s + (0.779 + 0.626i)3-s + (0.579 + 0.123i)4-s + (−0.125 + 0.992i)5-s + (−0.450 + 0.453i)6-s + (−0.579 − 1.00i)7-s + (−0.314 + 0.967i)8-s + (0.214 + 0.976i)9-s + (−0.621 − 0.145i)10-s + (0.0414 − 0.393i)11-s + (0.374 + 0.458i)12-s + (−0.144 − 1.37i)13-s + (0.676 − 0.301i)14-s + (−0.719 + 0.694i)15-s + (−0.0526 − 0.0234i)16-s + (0.329 − 1.01i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.117 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.117 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.117 - 0.993i$
Analytic conductor: \(1.79663\)
Root analytic conductor: \(1.34038\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (166, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1/2),\ -0.117 - 0.993i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.06214 + 1.19547i\)
\(L(\frac12)\) \(\approx\) \(1.06214 + 1.19547i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.34 - 1.08i)T \)
5 \( 1 + (0.280 - 2.21i)T \)
good2 \( 1 + (0.0944 - 0.898i)T + (-1.95 - 0.415i)T^{2} \)
7 \( 1 + (1.53 + 2.65i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-0.137 + 1.30i)T + (-10.7 - 2.28i)T^{2} \)
13 \( 1 + (0.522 + 4.96i)T + (-12.7 + 2.70i)T^{2} \)
17 \( 1 + (-1.36 + 4.18i)T + (-13.7 - 9.99i)T^{2} \)
19 \( 1 + (1.05 - 3.24i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (-5.20 + 2.31i)T + (15.3 - 17.0i)T^{2} \)
29 \( 1 + (4.40 - 4.88i)T + (-3.03 - 28.8i)T^{2} \)
31 \( 1 + (-3.64 - 4.05i)T + (-3.24 + 30.8i)T^{2} \)
37 \( 1 + (-5.90 + 4.29i)T + (11.4 - 35.1i)T^{2} \)
41 \( 1 + (0.166 + 1.58i)T + (-40.1 + 8.52i)T^{2} \)
43 \( 1 + (2.24 + 3.88i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (4.44 - 4.93i)T + (-4.91 - 46.7i)T^{2} \)
53 \( 1 + (2.18 + 6.70i)T + (-42.8 + 31.1i)T^{2} \)
59 \( 1 + (-0.368 - 3.50i)T + (-57.7 + 12.2i)T^{2} \)
61 \( 1 + (-1.28 + 12.1i)T + (-59.6 - 12.6i)T^{2} \)
67 \( 1 + (-3.68 - 4.09i)T + (-7.00 + 66.6i)T^{2} \)
71 \( 1 + (2.00 + 6.15i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (-5.08 - 3.69i)T + (22.5 + 69.4i)T^{2} \)
79 \( 1 + (-1.88 + 2.09i)T + (-8.25 - 78.5i)T^{2} \)
83 \( 1 + (11.8 - 2.50i)T + (75.8 - 33.7i)T^{2} \)
89 \( 1 + (-5.99 - 4.35i)T + (27.5 + 84.6i)T^{2} \)
97 \( 1 + (11.3 - 12.6i)T + (-10.1 - 96.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.66381325548521330693293673413, −11.10657147180566237801444355846, −10.59227872415021754335403951757, −9.697209893614382606021562155487, −8.258629637932877882565768243139, −7.47797959002637696744087251710, −6.72354806022246915148250782847, −5.33804045227273738062557940326, −3.52731358806281804816935788886, −2.82014470491195719156102209214, 1.57523079701583349970282129729, 2.69306614313065217374841988175, 4.16226958104673787479610004330, 5.98206689620837018202799395629, 6.92442880683881999316805127907, 8.187958493335716579689934752554, 9.297274750326861292645510304271, 9.635318819897270900029230742552, 11.43393199756280564594852270814, 12.02285223952170872431948636881

Graph of the $Z$-function along the critical line