L(s) = 1 | + (−1.63 − 1.18i)2-s + (0.641 + 1.97i)4-s + (2.07 − 0.843i)5-s + 1.01·7-s + (0.0473 − 0.145i)8-s + (−4.38 − 1.07i)10-s + (3.85 + 2.79i)11-s + (0.0840 − 0.0610i)13-s + (−1.66 − 1.20i)14-s + (3.10 − 2.25i)16-s + (1.80 − 5.55i)17-s + (−0.223 + 0.688i)19-s + (2.99 + 3.54i)20-s + (−2.96 − 9.13i)22-s + (−7.33 − 5.33i)23-s + ⋯ |
L(s) = 1 | + (−1.15 − 0.839i)2-s + (0.320 + 0.987i)4-s + (0.926 − 0.377i)5-s + 0.385·7-s + (0.0167 − 0.0514i)8-s + (−1.38 − 0.341i)10-s + (1.16 + 0.843i)11-s + (0.0232 − 0.0169i)13-s + (−0.444 − 0.323i)14-s + (0.777 − 0.564i)16-s + (0.437 − 1.34i)17-s + (−0.0513 + 0.158i)19-s + (0.669 + 0.793i)20-s + (−0.633 − 1.94i)22-s + (−1.53 − 1.11i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.327 + 0.944i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.327 + 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.693509 - 0.493444i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.693509 - 0.493444i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-2.07 + 0.843i)T \) |
good | 2 | \( 1 + (1.63 + 1.18i)T + (0.618 + 1.90i)T^{2} \) |
| 7 | \( 1 - 1.01T + 7T^{2} \) |
| 11 | \( 1 + (-3.85 - 2.79i)T + (3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (-0.0840 + 0.0610i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.80 + 5.55i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (0.223 - 0.688i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (7.33 + 5.33i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (-1.23 - 3.79i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-0.329 + 1.01i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (3.25 - 2.36i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-5.83 + 4.23i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 8.62T + 43T^{2} \) |
| 47 | \( 1 + (-2.53 - 7.79i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-1.34 - 4.15i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (3.97 - 2.88i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (5.63 + 4.09i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (3.06 - 9.43i)T + (-54.2 - 39.3i)T^{2} \) |
| 71 | \( 1 + (-3.33 - 10.2i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (6.98 + 5.07i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-0.767 - 2.36i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (1.31 - 4.03i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + (14.8 + 10.8i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (-2.07 - 6.37i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.00863278772722878060341135499, −10.87622852602852412814018362122, −9.924617620124054744574802942762, −9.365062529634747395173916106575, −8.528346914599518264315719091564, −7.29843493549267592546194639802, −5.90144274086218456582418916163, −4.50934526421255859698811692025, −2.51046993396445143284950057804, −1.30823927321469147368419195177,
1.56140787561405278751136635303, 3.74508412511464790025259479610, 5.85555628188951764276816499018, 6.30846590231575462049348152699, 7.58471697905861177592271417257, 8.511953173276536029166834632806, 9.379929212968957235838413463761, 10.16947734928938593216038712168, 11.13823982336492055232228523676, 12.36710875091004882112600654527