L(s) = 1 | + (−0.754 − 2.32i)2-s + (−3.19 + 2.32i)4-s + (−0.824 + 2.07i)5-s − 3.44·7-s + (3.85 + 2.80i)8-s + (5.44 + 0.345i)10-s + (1.00 + 3.10i)11-s + (−0.998 + 3.07i)13-s + (2.59 + 7.98i)14-s + (1.15 − 3.54i)16-s + (−4.08 − 2.97i)17-s + (2.49 + 1.81i)19-s + (−2.19 − 8.56i)20-s + (6.44 − 4.68i)22-s + (−0.478 − 1.47i)23-s + ⋯ |
L(s) = 1 | + (−0.533 − 1.64i)2-s + (−1.59 + 1.16i)4-s + (−0.368 + 0.929i)5-s − 1.30·7-s + (1.36 + 0.991i)8-s + (1.72 + 0.109i)10-s + (0.304 + 0.936i)11-s + (−0.277 + 0.852i)13-s + (0.693 + 2.13i)14-s + (0.288 − 0.887i)16-s + (−0.991 − 0.720i)17-s + (0.571 + 0.415i)19-s + (−0.490 − 1.91i)20-s + (1.37 − 0.998i)22-s + (−0.0997 − 0.306i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.638 - 0.769i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.638 - 0.769i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.282133 + 0.132577i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.282133 + 0.132577i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.824 - 2.07i)T \) |
good | 2 | \( 1 + (0.754 + 2.32i)T + (-1.61 + 1.17i)T^{2} \) |
| 7 | \( 1 + 3.44T + 7T^{2} \) |
| 11 | \( 1 + (-1.00 - 3.10i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (0.998 - 3.07i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (4.08 + 2.97i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-2.49 - 1.81i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (0.478 + 1.47i)T + (-18.6 + 13.5i)T^{2} \) |
| 29 | \( 1 + (2.52 - 1.83i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (6.02 + 4.37i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (1.77 - 5.47i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (1.67 - 5.15i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 2.53T + 43T^{2} \) |
| 47 | \( 1 + (-5.72 + 4.15i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (8.21 - 5.96i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (0.534 - 1.64i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-2.42 - 7.45i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + (-1.49 - 1.08i)T + (20.7 + 63.7i)T^{2} \) |
| 71 | \( 1 + (0.577 - 0.419i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (0.581 + 1.78i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-10.7 + 7.83i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-3.20 - 2.32i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + (2.63 + 8.11i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-8.61 + 6.26i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.06663726600112934295777310311, −11.43999349616241485513258612454, −10.44095297188869578458059243220, −9.649997467662088778753557530101, −9.091507100483169055168251035630, −7.44178884976322583304376128652, −6.51142388035496001324755967890, −4.32610951708912238463306348076, −3.30386167669944678712746995166, −2.20500720917927950878792245225,
0.29680581732251432449195411153, 3.67998841499595474887774941723, 5.23977877401025412522452295726, 6.06121851007196541477271061608, 7.09061933476232774852398220734, 8.113199819623064939948973251973, 8.997569396270392678250622990240, 9.550790614865744185403114459775, 10.93587702089973318755190222019, 12.48055494143868150841240563256