Properties

Label 2-15e2-25.6-c1-0-0
Degree $2$
Conductor $225$
Sign $0.638 - 0.769i$
Analytic cond. $1.79663$
Root an. cond. $1.34038$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.754 − 2.32i)2-s + (−3.19 + 2.32i)4-s + (−0.824 + 2.07i)5-s − 3.44·7-s + (3.85 + 2.80i)8-s + (5.44 + 0.345i)10-s + (1.00 + 3.10i)11-s + (−0.998 + 3.07i)13-s + (2.59 + 7.98i)14-s + (1.15 − 3.54i)16-s + (−4.08 − 2.97i)17-s + (2.49 + 1.81i)19-s + (−2.19 − 8.56i)20-s + (6.44 − 4.68i)22-s + (−0.478 − 1.47i)23-s + ⋯
L(s)  = 1  + (−0.533 − 1.64i)2-s + (−1.59 + 1.16i)4-s + (−0.368 + 0.929i)5-s − 1.30·7-s + (1.36 + 0.991i)8-s + (1.72 + 0.109i)10-s + (0.304 + 0.936i)11-s + (−0.277 + 0.852i)13-s + (0.693 + 2.13i)14-s + (0.288 − 0.887i)16-s + (−0.991 − 0.720i)17-s + (0.571 + 0.415i)19-s + (−0.490 − 1.91i)20-s + (1.37 − 0.998i)22-s + (−0.0997 − 0.306i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.638 - 0.769i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.638 - 0.769i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $0.638 - 0.769i$
Analytic conductor: \(1.79663\)
Root analytic conductor: \(1.34038\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (181, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1/2),\ 0.638 - 0.769i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.282133 + 0.132577i\)
\(L(\frac12)\) \(\approx\) \(0.282133 + 0.132577i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (0.824 - 2.07i)T \)
good2 \( 1 + (0.754 + 2.32i)T + (-1.61 + 1.17i)T^{2} \)
7 \( 1 + 3.44T + 7T^{2} \)
11 \( 1 + (-1.00 - 3.10i)T + (-8.89 + 6.46i)T^{2} \)
13 \( 1 + (0.998 - 3.07i)T + (-10.5 - 7.64i)T^{2} \)
17 \( 1 + (4.08 + 2.97i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (-2.49 - 1.81i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (0.478 + 1.47i)T + (-18.6 + 13.5i)T^{2} \)
29 \( 1 + (2.52 - 1.83i)T + (8.96 - 27.5i)T^{2} \)
31 \( 1 + (6.02 + 4.37i)T + (9.57 + 29.4i)T^{2} \)
37 \( 1 + (1.77 - 5.47i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (1.67 - 5.15i)T + (-33.1 - 24.0i)T^{2} \)
43 \( 1 - 2.53T + 43T^{2} \)
47 \( 1 + (-5.72 + 4.15i)T + (14.5 - 44.6i)T^{2} \)
53 \( 1 + (8.21 - 5.96i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (0.534 - 1.64i)T + (-47.7 - 34.6i)T^{2} \)
61 \( 1 + (-2.42 - 7.45i)T + (-49.3 + 35.8i)T^{2} \)
67 \( 1 + (-1.49 - 1.08i)T + (20.7 + 63.7i)T^{2} \)
71 \( 1 + (0.577 - 0.419i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (0.581 + 1.78i)T + (-59.0 + 42.9i)T^{2} \)
79 \( 1 + (-10.7 + 7.83i)T + (24.4 - 75.1i)T^{2} \)
83 \( 1 + (-3.20 - 2.32i)T + (25.6 + 78.9i)T^{2} \)
89 \( 1 + (2.63 + 8.11i)T + (-72.0 + 52.3i)T^{2} \)
97 \( 1 + (-8.61 + 6.26i)T + (29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.06663726600112934295777310311, −11.43999349616241485513258612454, −10.44095297188869578458059243220, −9.649997467662088778753557530101, −9.091507100483169055168251035630, −7.44178884976322583304376128652, −6.51142388035496001324755967890, −4.32610951708912238463306348076, −3.30386167669944678712746995166, −2.20500720917927950878792245225, 0.29680581732251432449195411153, 3.67998841499595474887774941723, 5.23977877401025412522452295726, 6.06121851007196541477271061608, 7.09061933476232774852398220734, 8.113199819623064939948973251973, 8.997569396270392678250622990240, 9.550790614865744185403114459775, 10.93587702089973318755190222019, 12.48055494143868150841240563256

Graph of the $Z$-function along the critical line