| L(s) = 1 | + 2.32i·3-s + 44.6i·5-s + (−36.5 − 32.6i)7-s + 75.6·9-s + 180.·11-s + 167. i·13-s − 103.·15-s − 13.9i·17-s + 400. i·19-s + (75.8 − 84.8i)21-s − 199.·23-s − 1.36e3·25-s + 363. i·27-s − 1.28e3·29-s − 669. i·31-s + ⋯ |
| L(s) = 1 | + 0.258i·3-s + 1.78i·5-s + (−0.745 − 0.666i)7-s + 0.933·9-s + 1.49·11-s + 0.989i·13-s − 0.460·15-s − 0.0482i·17-s + 1.11i·19-s + (0.172 − 0.192i)21-s − 0.376·23-s − 2.18·25-s + 0.498i·27-s − 1.52·29-s − 0.696i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.745 - 0.666i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.745 - 0.666i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{5}{2})\) |
\(\approx\) |
\(1.574259355\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.574259355\) |
| \(L(3)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (36.5 + 32.6i)T \) |
| good | 3 | \( 1 - 2.32iT - 81T^{2} \) |
| 5 | \( 1 - 44.6iT - 625T^{2} \) |
| 11 | \( 1 - 180.T + 1.46e4T^{2} \) |
| 13 | \( 1 - 167. iT - 2.85e4T^{2} \) |
| 17 | \( 1 + 13.9iT - 8.35e4T^{2} \) |
| 19 | \( 1 - 400. iT - 1.30e5T^{2} \) |
| 23 | \( 1 + 199.T + 2.79e5T^{2} \) |
| 29 | \( 1 + 1.28e3T + 7.07e5T^{2} \) |
| 31 | \( 1 + 669. iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 214.T + 1.87e6T^{2} \) |
| 41 | \( 1 - 1.28e3iT - 2.82e6T^{2} \) |
| 43 | \( 1 + 2.02e3T + 3.41e6T^{2} \) |
| 47 | \( 1 - 1.16e3iT - 4.87e6T^{2} \) |
| 53 | \( 1 + 2.38e3T + 7.89e6T^{2} \) |
| 59 | \( 1 + 6.80e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 - 3.59e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 5.52e3T + 2.01e7T^{2} \) |
| 71 | \( 1 - 3.45e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + 178. iT - 2.83e7T^{2} \) |
| 79 | \( 1 + 5.60e3T + 3.89e7T^{2} \) |
| 83 | \( 1 - 1.16e4iT - 4.74e7T^{2} \) |
| 89 | \( 1 + 1.12e4iT - 6.27e7T^{2} \) |
| 97 | \( 1 - 1.17e4iT - 8.85e7T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.69468602556754851611153985152, −10.97680265224766635576886260162, −9.883487681304740009956727019461, −9.547788303543366558750081780953, −7.63955013437144922767940785862, −6.76160018396118120207377305264, −6.28071996703975295487057502998, −4.04551753711327892483252905311, −3.53426657535323650073166525040, −1.77077820345178922790350757125,
0.54869405763826737765640125604, 1.71714021734058413596465846323, 3.71829338596810417658298761222, 4.88517642744026674504151084530, 5.95309776380202639616569916979, 7.15770050550768870341097953865, 8.497330537298177471699059650021, 9.182955524816285289303448227216, 9.900741615152037832415752413351, 11.55202656126144172100700280791