L(s) = 1 | + (4.19 + 2.41i)3-s + (−0.0446 + 0.0257i)5-s + (6.12 − 3.39i)7-s + (7.20 + 12.4i)9-s + (0.894 − 1.55i)11-s − 5.87i·13-s − 0.249·15-s + (23.0 + 13.2i)17-s + (−22.8 + 13.1i)19-s + (33.8 + 0.603i)21-s + (−12.8 − 22.2i)23-s + (−12.4 + 21.6i)25-s + 26.1i·27-s − 27.1·29-s + (−25.7 − 14.8i)31-s + ⋯ |
L(s) = 1 | + (1.39 + 0.806i)3-s + (−0.00892 + 0.00515i)5-s + (0.874 − 0.484i)7-s + (0.800 + 1.38i)9-s + (0.0813 − 0.140i)11-s − 0.452i·13-s − 0.0166·15-s + (1.35 + 0.781i)17-s + (−1.20 + 0.693i)19-s + (1.61 + 0.0287i)21-s + (−0.558 − 0.966i)23-s + (−0.499 + 0.865i)25-s + 0.969i·27-s − 0.937·29-s + (−0.829 − 0.479i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.806 - 0.591i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.806 - 0.591i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.43443 + 0.796669i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.43443 + 0.796669i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-6.12 + 3.39i)T \) |
good | 3 | \( 1 + (-4.19 - 2.41i)T + (4.5 + 7.79i)T^{2} \) |
| 5 | \( 1 + (0.0446 - 0.0257i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-0.894 + 1.55i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + 5.87iT - 169T^{2} \) |
| 17 | \( 1 + (-23.0 - 13.2i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (22.8 - 13.1i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (12.8 + 22.2i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + 27.1T + 841T^{2} \) |
| 31 | \( 1 + (25.7 + 14.8i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-30.8 - 53.4i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + 65.7iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 9.52T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-61.2 + 35.3i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (4.86 - 8.42i)T + (-1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (54.3 + 31.3i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (66.1 - 38.2i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-51.5 + 89.2i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 90.1T + 5.04e3T^{2} \) |
| 73 | \( 1 + (28.8 + 16.6i)T + (2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (32.4 + 56.1i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 29.1iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (-18.7 + 10.8i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 123. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.20103886134532328158896864261, −10.74572711265460877121214063548, −10.22517795471717672737836158162, −9.101704496708546025227845462393, −8.162362579301273350367807784241, −7.63008665250226595368159801196, −5.75141236545473068818207518678, −4.29417416324093986897810809818, −3.51608671109342517691176200331, −1.92630429750291607928702576293,
1.63971955801756715894419809430, 2.72252672323508552798108079157, 4.20945991198829534425954479501, 5.80571715598420086286266818870, 7.30937473908932804514233127212, 7.88202774665182144145007300926, 8.877358810267792243854505987349, 9.590977787815999849641846756327, 11.12551389611929535804044999973, 12.13087204676781953333260265354