L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.714 + 1.23i)5-s + (−2.06 + 1.19i)7-s − 0.999·8-s − 1.42·10-s + (3.59 − 2.07i)11-s + (3.86 + 2.23i)13-s + (−2.06 − 1.19i)14-s + (−0.5 − 0.866i)16-s + 8.04i·17-s − 0.0146i·19-s + (−0.714 − 1.23i)20-s + (3.59 + 2.07i)22-s + (1.70 − 2.96i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.319 + 0.553i)5-s + (−0.779 + 0.450i)7-s − 0.353·8-s − 0.451·10-s + (1.08 − 0.625i)11-s + (1.07 + 0.618i)13-s + (−0.551 − 0.318i)14-s + (−0.125 − 0.216i)16-s + 1.95i·17-s − 0.00337i·19-s + (−0.159 − 0.276i)20-s + (0.766 + 0.442i)22-s + (0.356 − 0.617i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.968 - 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.537399351\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.537399351\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 41 | \( 1 + (2.12 - 6.04i)T \) |
good | 5 | \( 1 + (0.714 - 1.23i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (2.06 - 1.19i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.59 + 2.07i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.86 - 2.23i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 8.04iT - 17T^{2} \) |
| 19 | \( 1 + 0.0146iT - 19T^{2} \) |
| 23 | \( 1 + (-1.70 + 2.96i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.69 - 2.13i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.83 + 6.63i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 1.09T + 37T^{2} \) |
| 43 | \( 1 + (4.92 + 8.52i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (11.3 - 6.54i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 2.16iT - 53T^{2} \) |
| 59 | \( 1 + (6.49 - 11.2i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.312 + 0.541i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.40 + 3.69i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 11.1iT - 71T^{2} \) |
| 73 | \( 1 + 2.91T + 73T^{2} \) |
| 79 | \( 1 + (-10.9 + 6.31i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.00 + 12.1i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 0.614iT - 89T^{2} \) |
| 97 | \( 1 + (3.71 - 2.14i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.068266688334117260533874863678, −8.682021940157459658753421730037, −7.84308662602219576439108493206, −6.77463686138776873860530401356, −6.24074643735826130323974344084, −5.90341580606809287569365323984, −4.43721190239621126272740237254, −3.68731208433034811873226901438, −3.10189934214823651407556117050, −1.52899787458215054337745335729,
0.50323940560530691199940109457, 1.53249690061190321614658760297, 3.05038005916126483845294007246, 3.61861610521032542616721465446, 4.60357181914126968060974919101, 5.24398574108749625175931690273, 6.45057051096496074710276467548, 6.93188757330073902480706085407, 8.022487267226276321034185342287, 8.900935023857873544366314985410