L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (1.69 − 2.93i)5-s + (0.610 − 0.352i)7-s − 0.999·8-s + 3.38·10-s + (3.96 − 2.28i)11-s + (0.325 + 0.187i)13-s + (0.610 + 0.352i)14-s + (−0.5 − 0.866i)16-s + 4.48i·17-s + 6.56i·19-s + (1.69 + 2.93i)20-s + (3.96 + 2.28i)22-s + (−3.58 + 6.21i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.757 − 1.31i)5-s + (0.230 − 0.133i)7-s − 0.353·8-s + 1.07·10-s + (1.19 − 0.690i)11-s + (0.0902 + 0.0520i)13-s + (0.163 + 0.0942i)14-s + (−0.125 − 0.216i)16-s + 1.08i·17-s + 1.50i·19-s + (0.378 + 0.656i)20-s + (0.845 + 0.488i)22-s + (−0.747 + 1.29i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.132i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.132i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.706262809\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.706262809\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 41 | \( 1 + (-5.87 + 2.53i)T \) |
good | 5 | \( 1 + (-1.69 + 2.93i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.610 + 0.352i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.96 + 2.28i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.325 - 0.187i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 4.48iT - 17T^{2} \) |
| 19 | \( 1 - 6.56iT - 19T^{2} \) |
| 23 | \( 1 + (3.58 - 6.21i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.69 + 2.13i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.11 + 5.38i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 8.18T + 37T^{2} \) |
| 43 | \( 1 + (5.57 + 9.66i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-10.8 + 6.24i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 3.00iT - 53T^{2} \) |
| 59 | \( 1 + (-4.55 + 7.88i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.65 + 6.32i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.40 - 1.38i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 8.35iT - 71T^{2} \) |
| 73 | \( 1 - 1.83T + 73T^{2} \) |
| 79 | \( 1 + (-3.73 + 2.15i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.10 + 8.84i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 5.98iT - 89T^{2} \) |
| 97 | \( 1 + (14.3 - 8.30i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.989841500259577112061289004196, −8.219174908731456621129849758501, −7.74210543262398279580672113621, −6.31392993254420560055369507119, −5.97919618053525928596286961527, −5.28548979038282477923104556285, −4.13892364906814148175785780240, −3.76613692956044265172600261135, −1.97696301662834437090439632877, −1.04054377556606383801839828128,
1.18026704663452255751750492618, 2.58710340384901536807732908850, 2.75903824576190782845956485358, 4.19747908844255620908975179611, 4.83277185354333527180097000513, 6.00271712305982640610289359948, 6.68121709002343413995471811249, 7.12350292666947614399899345425, 8.430084640172150710309976858666, 9.366669032552918734257206169460