L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.290 + 0.503i)5-s + (1.28 − 0.743i)7-s − 0.999·8-s − 0.581·10-s + (−1.04 + 0.603i)11-s + (−0.548 − 0.316i)13-s + (1.28 + 0.743i)14-s + (−0.5 − 0.866i)16-s + 4.99i·17-s − 4.61i·19-s + (−0.290 − 0.503i)20-s + (−1.04 − 0.603i)22-s + (−2.97 + 5.14i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.130 + 0.225i)5-s + (0.486 − 0.280i)7-s − 0.353·8-s − 0.183·10-s + (−0.315 + 0.182i)11-s + (−0.152 − 0.0878i)13-s + (0.343 + 0.198i)14-s + (−0.125 − 0.216i)16-s + 1.21i·17-s − 1.05i·19-s + (−0.0650 − 0.112i)20-s + (−0.222 − 0.128i)22-s + (−0.619 + 1.07i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.890 - 0.454i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.890 - 0.454i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.426415080\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.426415080\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 41 | \( 1 + (-3.88 - 5.09i)T \) |
good | 5 | \( 1 + (0.290 - 0.503i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.28 + 0.743i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.04 - 0.603i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.548 + 0.316i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 4.99iT - 17T^{2} \) |
| 19 | \( 1 + 4.61iT - 19T^{2} \) |
| 23 | \( 1 + (2.97 - 5.14i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.39 + 0.808i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.86 - 3.22i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 7.82T + 37T^{2} \) |
| 43 | \( 1 + (0.131 + 0.227i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.89 + 2.82i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 10.8iT - 53T^{2} \) |
| 59 | \( 1 + (3.14 - 5.44i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.48 + 4.30i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.98 - 1.72i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2.02iT - 71T^{2} \) |
| 73 | \( 1 + 3.43T + 73T^{2} \) |
| 79 | \( 1 + (10.0 - 5.78i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.16 + 2.01i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 1.76iT - 89T^{2} \) |
| 97 | \( 1 + (-4.40 + 2.54i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.158822220020911195309305752574, −8.499905773863616579227374329897, −7.60270319442973426550443017022, −7.20375129499009892200141054767, −6.22932984111508151005138608682, −5.43213352043473706628929876987, −4.64421838666499035606208640651, −3.80702427253367683622785647885, −2.84278916645281130076064906945, −1.49805553778534927147496432861,
0.43221273844667833349910155975, 1.87012418464654571867933553464, 2.72721437905012140134931649996, 3.80200715911094319625640648163, 4.68513456261413883857674726592, 5.33380604736677649306758584014, 6.20115574644842674360803130141, 7.18543194222906221635921307398, 8.135584493651656567764692693877, 8.705146677272222148152771084187