L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−1.84 + 3.18i)5-s + (−3.70 + 2.13i)7-s − 0.999·8-s − 3.68·10-s + (1.47 − 0.852i)11-s + (−2.77 − 1.60i)13-s + (−3.70 − 2.13i)14-s + (−0.5 − 0.866i)16-s + 4.51i·17-s − 5.82i·19-s + (−1.84 − 3.18i)20-s + (1.47 + 0.852i)22-s + (−3.20 + 5.55i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.823 + 1.42i)5-s + (−1.39 + 0.808i)7-s − 0.353·8-s − 1.16·10-s + (0.445 − 0.257i)11-s + (−0.770 − 0.444i)13-s + (−0.989 − 0.571i)14-s + (−0.125 − 0.216i)16-s + 1.09i·17-s − 1.33i·19-s + (−0.411 − 0.713i)20-s + (0.314 + 0.181i)22-s + (−0.669 + 1.15i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.486 + 0.873i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.486 + 0.873i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1560839901\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1560839901\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 41 | \( 1 + (5.21 - 3.71i)T \) |
good | 5 | \( 1 + (1.84 - 3.18i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (3.70 - 2.13i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.47 + 0.852i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.77 + 1.60i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 4.51iT - 17T^{2} \) |
| 19 | \( 1 + 5.82iT - 19T^{2} \) |
| 23 | \( 1 + (3.20 - 5.55i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.74 + 1.58i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.57 - 4.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 6.33T + 37T^{2} \) |
| 43 | \( 1 + (-4.05 - 7.02i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (2.35 - 1.35i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 5.28iT - 53T^{2} \) |
| 59 | \( 1 + (-5.63 + 9.75i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.09 + 5.35i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-11.2 - 6.47i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 1.62iT - 71T^{2} \) |
| 73 | \( 1 + 8.00T + 73T^{2} \) |
| 79 | \( 1 + (-7.60 + 4.38i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.74 + 9.95i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 6.84iT - 89T^{2} \) |
| 97 | \( 1 + (-13.7 + 7.93i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.693878443983814089364761388539, −8.825298641873669768490008334144, −7.915724788263281439934963815943, −7.24477910091150452209556503749, −6.40560161981985486722365955776, −6.19950757697261994108622779995, −5.00719244826859911098411928306, −3.77916812873092472828455786841, −3.23152179495535907135850872295, −2.50823623261964309426743743338,
0.05770685686464538089704367105, 0.980707145889274996797869789428, 2.43573427757352556778403978509, 3.73136483596367034974829398883, 4.13048584839508356444762923512, 4.90747459231380922928929871283, 5.91738847333890360819440341402, 6.88877722545411583504106019390, 7.61748592742956549861711253427, 8.576432635886686963546587378405