L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (1.58 + 2.74i)5-s + (−1.86 − 1.07i)7-s − 0.999·8-s + 3.17·10-s + (−0.206 − 0.119i)11-s + (−6.02 + 3.47i)13-s + (−1.86 + 1.07i)14-s + (−0.5 + 0.866i)16-s − 4.96i·17-s − 6.10i·19-s + (1.58 − 2.74i)20-s + (−0.206 + 0.119i)22-s + (1.71 + 2.97i)23-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.709 + 1.22i)5-s + (−0.704 − 0.406i)7-s − 0.353·8-s + 1.00·10-s + (−0.0623 − 0.0360i)11-s + (−1.67 + 0.964i)13-s + (−0.497 + 0.287i)14-s + (−0.125 + 0.216i)16-s − 1.20i·17-s − 1.40i·19-s + (0.354 − 0.614i)20-s + (−0.0440 + 0.0254i)22-s + (0.358 + 0.620i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0236i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0236i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4674755078\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4674755078\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 41 | \( 1 + (-2.20 - 6.01i)T \) |
good | 5 | \( 1 + (-1.58 - 2.74i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1.86 + 1.07i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.206 + 0.119i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (6.02 - 3.47i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 4.96iT - 17T^{2} \) |
| 19 | \( 1 + 6.10iT - 19T^{2} \) |
| 23 | \( 1 + (-1.71 - 2.97i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.10 - 1.79i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.95 + 8.58i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 10.7T + 37T^{2} \) |
| 43 | \( 1 + (1.63 - 2.82i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.37 + 3.10i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 1.18iT - 53T^{2} \) |
| 59 | \( 1 + (5.69 + 9.85i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.854 + 1.48i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.46 - 2.57i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8.31iT - 71T^{2} \) |
| 73 | \( 1 - 12.0T + 73T^{2} \) |
| 79 | \( 1 + (0.375 + 0.216i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.97 + 3.42i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 4.54iT - 89T^{2} \) |
| 97 | \( 1 + (6.84 + 3.95i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.194995640193675412831659044298, −7.60074870429656444532562516351, −6.81528204019060146338379053034, −6.61986286229900466675622876587, −5.28971408804976982502944601992, −4.67902097412789899901655466082, −3.41125776274361291270302059592, −2.73853189804373494667217432833, −2.01827785314635888651991025447, −0.13003272398122776695240352221,
1.59363325289568585969986318829, 2.80305911519185953933521340628, 3.86753423737245628614964651985, 5.00024455223418340911686194861, 5.40083945797328049096901142858, 6.12251951377939532741658449922, 7.02426892719601934858276088299, 7.968500914693274354385742575282, 8.625818615310894156782157404620, 9.254321238209499392477405049282