L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (1.58 + 2.74i)5-s + (1.86 + 1.07i)7-s − 0.999·8-s + 3.17·10-s + (0.206 + 0.119i)11-s + (6.02 − 3.47i)13-s + (1.86 − 1.07i)14-s + (−0.5 + 0.866i)16-s + 4.96i·17-s + 6.10i·19-s + (1.58 − 2.74i)20-s + (0.206 − 0.119i)22-s + (1.71 + 2.97i)23-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.709 + 1.22i)5-s + (0.704 + 0.406i)7-s − 0.353·8-s + 1.00·10-s + (0.0623 + 0.0360i)11-s + (1.67 − 0.964i)13-s + (0.497 − 0.287i)14-s + (−0.125 + 0.216i)16-s + 1.20i·17-s + 1.40i·19-s + (0.354 − 0.614i)20-s + (0.0440 − 0.0254i)22-s + (0.358 + 0.620i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.933 - 0.359i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.933 - 0.359i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.719371320\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.719371320\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 41 | \( 1 + (-4.10 - 4.91i)T \) |
good | 5 | \( 1 + (-1.58 - 2.74i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.86 - 1.07i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.206 - 0.119i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-6.02 + 3.47i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 4.96iT - 17T^{2} \) |
| 19 | \( 1 - 6.10iT - 19T^{2} \) |
| 23 | \( 1 + (-1.71 - 2.97i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.10 + 1.79i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.95 + 8.58i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 10.7T + 37T^{2} \) |
| 43 | \( 1 + (1.63 - 2.82i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.37 - 3.10i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 1.18iT - 53T^{2} \) |
| 59 | \( 1 + (5.69 + 9.85i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.854 + 1.48i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.46 + 2.57i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 8.31iT - 71T^{2} \) |
| 73 | \( 1 - 12.0T + 73T^{2} \) |
| 79 | \( 1 + (-0.375 - 0.216i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.97 + 3.42i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 4.54iT - 89T^{2} \) |
| 97 | \( 1 + (-6.84 - 3.95i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.252834818900711344800851854751, −8.278308073561860766774399843794, −7.70958557428238502099993790123, −6.36203487390447063594877504432, −5.94845536978599381017474296836, −5.31293877644011890373732630050, −3.79659937825258436170462916156, −3.43439687863290717864002197363, −2.16876200036391851996308151727, −1.48488300164501479456572348933,
0.910188338238698107211318349967, 1.92291889084777466942284476825, 3.43860491092405475859819140071, 4.46442535928035745151069629143, 5.03454374013455727188389183454, 5.66066144852592113360319529762, 6.76651799175838073770396776154, 7.22667987289946260555144813764, 8.471055427716857429471817653164, 8.985448645628706054431440876229