| L(s) = 1 | + 1.36i·2-s − 1.68·3-s + 0.148·4-s + 1.63i·5-s − 2.29i·6-s − 0.615i·7-s + 2.92i·8-s − 0.148·9-s − 2.22·10-s + 5.26i·11-s − 0.250·12-s + (−3.27 − 1.50i)13-s + 0.836·14-s − 2.76i·15-s − 3.68·16-s + 17-s + ⋯ |
| L(s) = 1 | + 0.962i·2-s − 0.974·3-s + 0.0741·4-s + 0.732i·5-s − 0.938i·6-s − 0.232i·7-s + 1.03i·8-s − 0.0494·9-s − 0.704·10-s + 1.58i·11-s − 0.0722·12-s + (−0.908 − 0.417i)13-s + 0.223·14-s − 0.714i·15-s − 0.920·16-s + 0.242·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.908 - 0.417i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.908 - 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.176148 + 0.805711i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.176148 + 0.805711i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 + (3.27 + 1.50i)T \) |
| 17 | \( 1 - T \) |
| good | 2 | \( 1 - 1.36iT - 2T^{2} \) |
| 3 | \( 1 + 1.68T + 3T^{2} \) |
| 5 | \( 1 - 1.63iT - 5T^{2} \) |
| 7 | \( 1 + 0.615iT - 7T^{2} \) |
| 11 | \( 1 - 5.26iT - 11T^{2} \) |
| 19 | \( 1 + 1.59iT - 19T^{2} \) |
| 23 | \( 1 + 6.69T + 23T^{2} \) |
| 29 | \( 1 - 8.70T + 29T^{2} \) |
| 31 | \( 1 - 9.25iT - 31T^{2} \) |
| 37 | \( 1 - 1.63iT - 37T^{2} \) |
| 41 | \( 1 + 3.09iT - 41T^{2} \) |
| 43 | \( 1 - 4.69T + 43T^{2} \) |
| 47 | \( 1 + 10.2iT - 47T^{2} \) |
| 53 | \( 1 - 10.3T + 53T^{2} \) |
| 59 | \( 1 - 2.31iT - 59T^{2} \) |
| 61 | \( 1 - 1.30T + 61T^{2} \) |
| 67 | \( 1 + 6.87iT - 67T^{2} \) |
| 71 | \( 1 - 15.8iT - 71T^{2} \) |
| 73 | \( 1 + 2.86iT - 73T^{2} \) |
| 79 | \( 1 + 1.71T + 79T^{2} \) |
| 83 | \( 1 - 5.58iT - 83T^{2} \) |
| 89 | \( 1 + 12.9iT - 89T^{2} \) |
| 97 | \( 1 + 2.28iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.29136711926108592581711591144, −11.93114968420777943015253873452, −10.61185146548672863823087910175, −10.12718308088741769098971767090, −8.434404272831652552000652758241, −7.14363346187577068268133672430, −6.83869525846039820661298663505, −5.61033120361403293257015803450, −4.70001463234104775303134069329, −2.53236142013933011042862029013,
0.76254463889581335996807597989, 2.66383027614377192116621346860, 4.23910883155658231231510505706, 5.61518410853617035456063900188, 6.40276978727871937593447791051, 8.007007680878284298036738361163, 9.166353591354152707194621044551, 10.25809872049499292865053476569, 11.08712563608160099747396909760, 11.96908809578194731189052112144