| L(s) = 1 | + 2·4-s − 2.23i·5-s + 3·11-s − 6.70i·13-s + 4·16-s − 2.23i·17-s − 4.47i·20-s − 5.00·25-s − 9·29-s + 6·44-s + 11.1i·47-s − 13.4i·52-s − 6.70i·55-s + 8·64-s − 15.0·65-s + ⋯ |
| L(s) = 1 | + 4-s − 0.999i·5-s + 0.904·11-s − 1.86i·13-s + 16-s − 0.542i·17-s − 0.999i·20-s − 1.00·25-s − 1.67·29-s + 0.904·44-s + 1.63i·47-s − 1.86i·52-s − 0.904i·55-s + 64-s − 1.86·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.255568197\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.255568197\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 + 2.23iT \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 - 2T^{2} \) |
| 11 | \( 1 - 3T + 11T^{2} \) |
| 13 | \( 1 + 6.70iT - 13T^{2} \) |
| 17 | \( 1 + 2.23iT - 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + 9T + 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 - 11.1iT - 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 + 13.4iT - 73T^{2} \) |
| 79 | \( 1 - T + 79T^{2} \) |
| 83 | \( 1 + 8.94iT - 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + 6.70iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.894906836104855504452077993308, −7.85151571939304969434131569200, −7.56975380788859788257358982809, −6.40891496103094300770859251850, −5.71675920082583197683234924659, −5.03260973859624312324749565359, −3.84103101574617743385933003172, −2.98832972993189075799072485191, −1.79660858322491714909986436321, −0.75247110204299960144919557136,
1.66710869575317664509841209561, 2.27649644787652347374740204513, 3.54834642237086968305671203142, 4.07497607912174528141005543020, 5.54097090215634869573652336963, 6.40204357860456518017262622576, 6.84833226466404512755412142014, 7.39471658529375921098455680408, 8.436855195587168631105189545732, 9.371059841556066167526026663404