Properties

Label 2-2200-5.4-c1-0-41
Degree $2$
Conductor $2200$
Sign $-0.447 + 0.894i$
Analytic cond. $17.5670$
Root an. cond. $4.19131$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.16i·3-s − 4.97i·7-s + 1.63·9-s − 11-s − 0.665i·13-s − 6.77i·17-s − 19-s + 5.80·21-s + 2.16i·23-s + 5.41i·27-s − 7.97·29-s − 8.94·31-s − 1.16i·33-s + 0.139i·37-s + 0.776·39-s + ⋯
L(s)  = 1  + 0.674i·3-s − 1.87i·7-s + 0.545·9-s − 0.301·11-s − 0.184i·13-s − 1.64i·17-s − 0.229·19-s + 1.26·21-s + 0.451i·23-s + 1.04i·27-s − 1.48·29-s − 1.60·31-s − 0.203i·33-s + 0.0229i·37-s + 0.124·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2200\)    =    \(2^{3} \cdot 5^{2} \cdot 11\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(17.5670\)
Root analytic conductor: \(4.19131\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2200} (1849, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2200,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.056003629\)
\(L(\frac12)\) \(\approx\) \(1.056003629\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - 1.16iT - 3T^{2} \)
7 \( 1 + 4.97iT - 7T^{2} \)
13 \( 1 + 0.665iT - 13T^{2} \)
17 \( 1 + 6.77iT - 17T^{2} \)
19 \( 1 + T + 19T^{2} \)
23 \( 1 - 2.16iT - 23T^{2} \)
29 \( 1 + 7.97T + 29T^{2} \)
31 \( 1 + 8.94T + 31T^{2} \)
37 \( 1 - 0.139iT - 37T^{2} \)
41 \( 1 + 1.80T + 41T^{2} \)
43 \( 1 - 2.80iT - 43T^{2} \)
47 \( 1 + 0.530iT - 47T^{2} \)
53 \( 1 + 6.30iT - 53T^{2} \)
59 \( 1 + 11.4T + 59T^{2} \)
61 \( 1 - 10.5T + 61T^{2} \)
67 \( 1 + 9.60iT - 67T^{2} \)
71 \( 1 + 9.80T + 71T^{2} \)
73 \( 1 + 7.02iT - 73T^{2} \)
79 \( 1 + 5.50T + 79T^{2} \)
83 \( 1 - 13.5iT - 83T^{2} \)
89 \( 1 - 9.58T + 89T^{2} \)
97 \( 1 - 14.7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.077865311042405410828134779355, −7.68415748643580166580605690998, −7.41345721259849185292513483744, −6.69187255166458058538889037253, −5.36601259370412771891157760842, −4.70140895929062324763487119829, −3.88833330362496669967535139511, −3.27587536915220414749518283516, −1.67404407520385136011375059001, −0.34902508411128516001583502466, 1.72746763159072244422342267147, 2.20055758678322310219710062903, 3.44778923961065800279526637817, 4.52563964430970735548335112865, 5.72250857918311024026354904560, 5.95515826705176332163779117372, 7.00025536660538152592965640395, 7.78468147275289457068348027696, 8.610830981180129953149968106631, 9.053904100395233743747480488148

Graph of the $Z$-function along the critical line