L(s) = 1 | + (1.36 + 0.354i)2-s + (1.16 − 1.16i)3-s + (1.74 + 0.971i)4-s + (−1.42 − 1.72i)5-s + (2.00 − 1.18i)6-s + (−1.60 − 1.60i)7-s + (2.04 + 1.94i)8-s + 0.282i·9-s + (−1.33 − 2.86i)10-s − i·11-s + (3.17 − 0.906i)12-s + (3.94 + 3.94i)13-s + (−1.62 − 2.76i)14-s + (−3.66 − 0.350i)15-s + (2.11 + 3.39i)16-s + (−4.86 + 4.86i)17-s + ⋯ |
L(s) = 1 | + (0.968 + 0.250i)2-s + (0.673 − 0.673i)3-s + (0.874 + 0.485i)4-s + (−0.636 − 0.771i)5-s + (0.820 − 0.482i)6-s + (−0.605 − 0.605i)7-s + (0.724 + 0.689i)8-s + 0.0940i·9-s + (−0.423 − 0.906i)10-s − 0.301i·11-s + (0.915 − 0.261i)12-s + (1.09 + 1.09i)13-s + (−0.434 − 0.737i)14-s + (−0.947 − 0.0903i)15-s + (0.528 + 0.848i)16-s + (−1.17 + 1.17i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.932 + 0.361i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.932 + 0.361i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.19550 - 0.411202i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.19550 - 0.411202i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 - 0.354i)T \) |
| 5 | \( 1 + (1.42 + 1.72i)T \) |
| 11 | \( 1 + iT \) |
good | 3 | \( 1 + (-1.16 + 1.16i)T - 3iT^{2} \) |
| 7 | \( 1 + (1.60 + 1.60i)T + 7iT^{2} \) |
| 13 | \( 1 + (-3.94 - 3.94i)T + 13iT^{2} \) |
| 17 | \( 1 + (4.86 - 4.86i)T - 17iT^{2} \) |
| 19 | \( 1 + 5.54T + 19T^{2} \) |
| 23 | \( 1 + (-3.01 + 3.01i)T - 23iT^{2} \) |
| 29 | \( 1 + 6.65iT - 29T^{2} \) |
| 31 | \( 1 + 0.619iT - 31T^{2} \) |
| 37 | \( 1 + (-0.294 + 0.294i)T - 37iT^{2} \) |
| 41 | \( 1 + 2.27T + 41T^{2} \) |
| 43 | \( 1 + (-2.52 + 2.52i)T - 43iT^{2} \) |
| 47 | \( 1 + (8.42 + 8.42i)T + 47iT^{2} \) |
| 53 | \( 1 + (-2.22 - 2.22i)T + 53iT^{2} \) |
| 59 | \( 1 - 1.02T + 59T^{2} \) |
| 61 | \( 1 + 4.52T + 61T^{2} \) |
| 67 | \( 1 + (-3.45 - 3.45i)T + 67iT^{2} \) |
| 71 | \( 1 + 11.6iT - 71T^{2} \) |
| 73 | \( 1 + (-3.57 - 3.57i)T + 73iT^{2} \) |
| 79 | \( 1 + 2.91T + 79T^{2} \) |
| 83 | \( 1 + (9.90 - 9.90i)T - 83iT^{2} \) |
| 89 | \( 1 + 10.6iT - 89T^{2} \) |
| 97 | \( 1 + (0.328 - 0.328i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.71069010546198496567667214495, −11.47690992955292426396403291367, −10.66227509835394355814480031973, −8.712103796793425688302497084998, −8.277935171543900787343441655395, −6.98984544180097527125053584934, −6.25487380818414382055181071190, −4.48494222434293962873903504024, −3.72191709984007703215726337286, −1.97311584535653205051091252422,
2.77313039237660028503755075501, 3.44169427168156585695751272516, 4.61417905784308438211320886950, 6.13359429410784112734441486489, 7.02131983374445992534478412972, 8.481022276581061582180184028137, 9.556758191823884819699795100642, 10.66731757326797496645782873636, 11.30154555376606884240928756559, 12.49444040677178681716059941197