L(s) = 1 | + 2-s + 4-s − 1.93i·5-s + 8-s − 1.93i·10-s + 0.517i·13-s + 16-s + 5·17-s − 7.72i·19-s − 1.93i·20-s + 2.07i·23-s + 1.26·25-s + 0.517i·26-s − 9.19·29-s + 6.92·31-s + 32-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 0.863i·5-s + 0.353·8-s − 0.610i·10-s + 0.143i·13-s + 0.250·16-s + 1.21·17-s − 1.77i·19-s − 0.431i·20-s + 0.431i·23-s + 0.253·25-s + 0.101i·26-s − 1.70·29-s + 1.24·31-s + 0.176·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2178 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.394 + 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2178 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.394 + 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.778102611\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.778102611\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + 1.93iT - 5T^{2} \) |
| 7 | \( 1 - 7T^{2} \) |
| 13 | \( 1 - 0.517iT - 13T^{2} \) |
| 17 | \( 1 - 5T + 17T^{2} \) |
| 19 | \( 1 + 7.72iT - 19T^{2} \) |
| 23 | \( 1 - 2.07iT - 23T^{2} \) |
| 29 | \( 1 + 9.19T + 29T^{2} \) |
| 31 | \( 1 - 6.92T + 31T^{2} \) |
| 37 | \( 1 + 3.92T + 37T^{2} \) |
| 41 | \( 1 + 1.73T + 41T^{2} \) |
| 43 | \( 1 + 9.79iT - 43T^{2} \) |
| 47 | \( 1 - 5.65iT - 47T^{2} \) |
| 53 | \( 1 + 13.9iT - 53T^{2} \) |
| 59 | \( 1 + 5.65iT - 59T^{2} \) |
| 61 | \( 1 + 0.656iT - 61T^{2} \) |
| 67 | \( 1 - 8T + 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + 7.07iT - 73T^{2} \) |
| 79 | \( 1 - 15.4iT - 79T^{2} \) |
| 83 | \( 1 - 1.07T + 83T^{2} \) |
| 89 | \( 1 + 9.76iT - 89T^{2} \) |
| 97 | \( 1 - 16.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.946963758917016405094304313466, −8.116051521029897538477355746524, −7.26386357121182202358426287588, −6.55573769948817457491935602936, −5.37390533499086573597140310030, −5.11872008594726770986286789158, −4.08188844781428505550324418319, −3.21689639036868521834749474389, −2.06883190453777404533758059520, −0.803625489307882722692235581016,
1.43236139775505650666772353284, 2.66908167048025799867612159982, 3.44435835286657161859150743897, 4.19949759254518242977440074848, 5.40263634916511925684820893392, 5.95450788946463613523827597741, 6.77350701994811195254719414967, 7.60549017515265236732031542665, 8.144850171725450778801004039333, 9.327695889999472012527145175632