L(s) = 1 | − 2.56i·2-s + i·3-s − 4.56·4-s + 2.56·6-s + 3.12i·7-s + 6.56i·8-s − 9-s − 5.56·11-s − 4.56i·12-s − 2i·13-s + 8·14-s + 7.68·16-s − 1.12i·17-s + 2.56i·18-s + 3.12·19-s + ⋯ |
L(s) = 1 | − 1.81i·2-s + 0.577i·3-s − 2.28·4-s + 1.04·6-s + 1.18i·7-s + 2.31i·8-s − 0.333·9-s − 1.67·11-s − 1.31i·12-s − 0.554i·13-s + 2.13·14-s + 1.92·16-s − 0.272i·17-s + 0.603i·18-s + 0.716·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9179690014\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9179690014\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 + 2.56iT - 2T^{2} \) |
| 7 | \( 1 - 3.12iT - 7T^{2} \) |
| 11 | \( 1 + 5.56T + 11T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 + 1.12iT - 17T^{2} \) |
| 19 | \( 1 - 3.12T + 19T^{2} \) |
| 23 | \( 1 - 2.43iT - 23T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + 10.6iT - 37T^{2} \) |
| 41 | \( 1 - 10.6T + 41T^{2} \) |
| 43 | \( 1 + 4.68iT - 43T^{2} \) |
| 47 | \( 1 - 4.87iT - 47T^{2} \) |
| 53 | \( 1 + 7.56iT - 53T^{2} \) |
| 59 | \( 1 + 12T + 59T^{2} \) |
| 61 | \( 1 - 9.12T + 61T^{2} \) |
| 67 | \( 1 + 13.3iT - 67T^{2} \) |
| 71 | \( 1 + 11.1T + 71T^{2} \) |
| 73 | \( 1 + 10.6iT - 73T^{2} \) |
| 79 | \( 1 - 12T + 79T^{2} \) |
| 83 | \( 1 - 1.56iT - 83T^{2} \) |
| 89 | \( 1 - 4.24T + 89T^{2} \) |
| 97 | \( 1 + 6.68iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.288147464462274579651194142907, −8.272043484307526779558785349190, −7.61895413525123564445502202020, −5.78055829869145500749852374058, −5.31353517840059737139040302142, −4.55792882557521425906612668622, −3.39826119013099505134550932173, −2.76312201184365734867181228665, −2.09133606814422816123499123628, −0.41124233683428177989139806321,
0.938075068546832454543000935030, 2.78158736611961523639792596892, 4.13209492771647556333732171127, 4.83892974456055030360231832003, 5.65421265092610980269431655960, 6.46517297776241480823529265099, 7.11941902189559581219967915467, 7.77844300012635102264914450806, 8.099707705731057820353778767370, 9.046853585728283829089775159895