L(s) = 1 | + (−1.87 − 1.22i)5-s + (1.79 − 1.79i)7-s + 0.646i·11-s + (3.79 + 3.79i)13-s + (4.96 + 4.96i)17-s − 6.58i·19-s + (−1.87 + 1.87i)23-s + (2 + 4.58i)25-s − 7.99·29-s + 0.582·31-s + (−5.54 + 1.15i)35-s + (3 − 3i)37-s + 4.25i·41-s + (0.791 + 0.791i)43-s + (1.93 + 1.93i)47-s + ⋯ |
L(s) = 1 | + (−0.836 − 0.547i)5-s + (0.677 − 0.677i)7-s + 0.194i·11-s + (1.05 + 1.05i)13-s + (1.20 + 1.20i)17-s − 1.51i·19-s + (−0.390 + 0.390i)23-s + (0.400 + 0.916i)25-s − 1.48·29-s + 0.104·31-s + (−0.937 + 0.195i)35-s + (0.493 − 0.493i)37-s + 0.664i·41-s + (0.120 + 0.120i)43-s + (0.282 + 0.282i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.940 + 0.340i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.940 + 0.340i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.736400316\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.736400316\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.87 + 1.22i)T \) |
good | 7 | \( 1 + (-1.79 + 1.79i)T - 7iT^{2} \) |
| 11 | \( 1 - 0.646iT - 11T^{2} \) |
| 13 | \( 1 + (-3.79 - 3.79i)T + 13iT^{2} \) |
| 17 | \( 1 + (-4.96 - 4.96i)T + 17iT^{2} \) |
| 19 | \( 1 + 6.58iT - 19T^{2} \) |
| 23 | \( 1 + (1.87 - 1.87i)T - 23iT^{2} \) |
| 29 | \( 1 + 7.99T + 29T^{2} \) |
| 31 | \( 1 - 0.582T + 31T^{2} \) |
| 37 | \( 1 + (-3 + 3i)T - 37iT^{2} \) |
| 41 | \( 1 - 4.25iT - 41T^{2} \) |
| 43 | \( 1 + (-0.791 - 0.791i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.93 - 1.93i)T + 47iT^{2} \) |
| 53 | \( 1 + (-5.47 + 5.47i)T - 53iT^{2} \) |
| 59 | \( 1 - 12.8T + 59T^{2} \) |
| 61 | \( 1 - 6.16T + 61T^{2} \) |
| 67 | \( 1 + (-7 + 7i)T - 67iT^{2} \) |
| 71 | \( 1 + 14.3iT - 71T^{2} \) |
| 73 | \( 1 + (1.20 + 1.20i)T + 73iT^{2} \) |
| 79 | \( 1 - 6.16iT - 79T^{2} \) |
| 83 | \( 1 + (-1.22 + 1.22i)T - 83iT^{2} \) |
| 89 | \( 1 - 9.42T + 89T^{2} \) |
| 97 | \( 1 + (-7.58 + 7.58i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.939615383236145179616475476288, −8.187239889697910092429720864024, −7.60692429572474737700590528842, −6.85181675133995603736631234487, −5.82123679691109863087096408840, −4.88049589291396851096068973052, −4.05465138800125673199708492373, −3.57514532136000761063903429909, −1.87989570709029674959854913832, −0.893066430654483616123088564872,
0.914919136683459442777036337991, 2.37141182793316391546035290000, 3.40997239420174553189632363347, 4.00409636164300009720019469871, 5.43905393668035780762782475702, 5.68682956929277860318191508623, 6.89617041537010784718570953679, 7.83329900265970622586491961774, 8.116984105094759980597908349100, 8.933117615460227697322585439392