L(s) = 1 | + (0.5 + 0.866i)5-s + (−2 + 3.46i)7-s + (−1.5 + 2.59i)11-s + (2 + 3.46i)13-s − 3·17-s − 5·19-s + (−3 − 5.19i)23-s + (−0.499 + 0.866i)25-s + (3 − 5.19i)29-s + (1 + 1.73i)31-s − 3.99·35-s − 4·37-s + (−1.5 − 2.59i)41-s + (5.5 − 9.52i)43-s + (−4.49 − 7.79i)49-s + ⋯ |
L(s) = 1 | + (0.223 + 0.387i)5-s + (−0.755 + 1.30i)7-s + (−0.452 + 0.783i)11-s + (0.554 + 0.960i)13-s − 0.727·17-s − 1.14·19-s + (−0.625 − 1.08i)23-s + (−0.0999 + 0.173i)25-s + (0.557 − 0.964i)29-s + (0.179 + 0.311i)31-s − 0.676·35-s − 0.657·37-s + (−0.234 − 0.405i)41-s + (0.838 − 1.45i)43-s + (−0.642 − 1.11i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4565246712\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4565246712\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
good | 7 | \( 1 + (2 - 3.46i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.5 - 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2 - 3.46i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 3T + 17T^{2} \) |
| 19 | \( 1 + 5T + 19T^{2} \) |
| 23 | \( 1 + (3 + 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1 - 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 4T + 37T^{2} \) |
| 41 | \( 1 + (1.5 + 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.5 + 9.52i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 6T + 53T^{2} \) |
| 59 | \( 1 + (-1.5 - 2.59i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5 + 8.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.5 - 4.33i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + 7T + 73T^{2} \) |
| 79 | \( 1 + (-7 + 12.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (6 - 10.3i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (5.5 - 9.52i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.402942577425087398479176564554, −8.793346068742603410345359597751, −8.161472199722796633941396541098, −6.83615687115414368088805621064, −6.48961617953921916233822252534, −5.71818996371537310561122043953, −4.66631841423249112835380426293, −3.80749145910028712798896568077, −2.44228577604610559671111968615, −2.14067710149733722149566210170,
0.15602568462835910984476964763, 1.32105472799674481283707591934, 2.84556844312553614716460414787, 3.68415164302403484624035978709, 4.48322592089821071348484888830, 5.57058215124847295624119353187, 6.28768471629385498977873769095, 7.03183235798077611270013236439, 8.001858361789386089999430210507, 8.515108316906787822115100080077