| L(s)  = 1  |     + (0.342 − 0.939i)3-s     + (0.939 + 0.342i)5-s     + (0.118 − 0.673i)7-s     + (−0.766 − 0.642i)9-s             + (0.642 − 0.766i)15-s             + (−0.592 − 0.342i)21-s     + (−0.342 − 1.93i)23-s     + (0.766 + 0.642i)25-s     + (−0.866 + 0.500i)27-s     + (0.266 + 0.223i)29-s             + (0.342 − 0.592i)35-s             + (−1.17 + 0.984i)41-s     + (1.62 − 0.592i)43-s     + (−0.500 − 0.866i)45-s     + (−0.223 + 1.26i)47-s    + ⋯ | 
 
| L(s)  = 1  |     + (0.342 − 0.939i)3-s     + (0.939 + 0.342i)5-s     + (0.118 − 0.673i)7-s     + (−0.766 − 0.642i)9-s             + (0.642 − 0.766i)15-s             + (−0.592 − 0.342i)21-s     + (−0.342 − 1.93i)23-s     + (0.766 + 0.642i)25-s     + (−0.866 + 0.500i)27-s     + (0.266 + 0.223i)29-s             + (0.342 − 0.592i)35-s             + (−1.17 + 0.984i)41-s     + (1.62 − 0.592i)43-s     + (−0.500 − 0.866i)45-s     + (−0.223 + 1.26i)47-s    + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.286 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.286 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(1.511364496\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(1.511364496\)  | 
    
    
        
      |  \(L(1)\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 \)  | 
 | 3 |  \( 1 + (-0.342 + 0.939i)T \)  | 
 | 5 |  \( 1 + (-0.939 - 0.342i)T \)  | 
| good | 7 |  \( 1 + (-0.118 + 0.673i)T + (-0.939 - 0.342i)T^{2} \)  | 
 | 11 |  \( 1 + (-0.766 + 0.642i)T^{2} \)  | 
 | 13 |  \( 1 + (-0.173 + 0.984i)T^{2} \)  | 
 | 17 |  \( 1 + (0.5 - 0.866i)T^{2} \)  | 
 | 19 |  \( 1 + (0.5 + 0.866i)T^{2} \)  | 
 | 23 |  \( 1 + (0.342 + 1.93i)T + (-0.939 + 0.342i)T^{2} \)  | 
 | 29 |  \( 1 + (-0.266 - 0.223i)T + (0.173 + 0.984i)T^{2} \)  | 
 | 31 |  \( 1 + (0.939 - 0.342i)T^{2} \)  | 
 | 37 |  \( 1 + (0.5 - 0.866i)T^{2} \)  | 
 | 41 |  \( 1 + (1.17 - 0.984i)T + (0.173 - 0.984i)T^{2} \)  | 
 | 43 |  \( 1 + (-1.62 + 0.592i)T + (0.766 - 0.642i)T^{2} \)  | 
 | 47 |  \( 1 + (0.223 - 1.26i)T + (-0.939 - 0.342i)T^{2} \)  | 
 | 53 |  \( 1 - T^{2} \)  | 
 | 59 |  \( 1 + (-0.766 - 0.642i)T^{2} \)  | 
 | 61 |  \( 1 + (-0.326 + 1.85i)T + (-0.939 - 0.342i)T^{2} \)  | 
 | 67 |  \( 1 + (0.984 - 0.826i)T + (0.173 - 0.984i)T^{2} \)  | 
 | 71 |  \( 1 + (0.5 - 0.866i)T^{2} \)  | 
 | 73 |  \( 1 + (0.5 + 0.866i)T^{2} \)  | 
 | 79 |  \( 1 + (-0.173 - 0.984i)T^{2} \)  | 
 | 83 |  \( 1 + (-0.984 - 0.826i)T + (0.173 + 0.984i)T^{2} \)  | 
 | 89 |  \( 1 + (0.766 - 1.32i)T + (-0.5 - 0.866i)T^{2} \)  | 
 | 97 |  \( 1 + (-0.766 + 0.642i)T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.026259573232122499224526128195, −8.276354720143162449143999648326, −7.51472759121194087571838583144, −6.64717453063933137376783112143, −6.29734574762364254234866802669, −5.26078429138109061337373744701, −4.17187210833548276002232401630, −2.97287020528930725746174636359, −2.22333283458433175650552721276, −1.09884854478204742840896356890, 
1.75122750271444623174506195638, 2.67151709415962196876956070673, 3.67913100951093002033152663407, 4.67518602992274797781365938478, 5.56293892536385545522785837989, 5.83719424232935308661342313424, 7.14662911184352331451192697103, 8.129481832049853057931163426888, 8.906448854542505581136156049073, 9.323925477847070434955511806770