Properties

Label 2-6e3-216.5-c2-0-54
Degree $2$
Conductor $216$
Sign $-0.989 + 0.146i$
Analytic cond. $5.88557$
Root an. cond. $2.42602$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.94 − 0.454i)2-s + (−0.0785 − 2.99i)3-s + (3.58 + 1.76i)4-s + (0.792 − 0.288i)5-s + (−1.20 + 5.87i)6-s + (−1.04 − 5.93i)7-s + (−6.18 − 5.07i)8-s + (−8.98 + 0.471i)9-s + (−1.67 + 0.201i)10-s + (2.38 + 0.866i)11-s + (5.02 − 10.8i)12-s + (4.73 − 5.64i)13-s + (−0.657 + 12.0i)14-s + (−0.926 − 2.35i)15-s + (9.73 + 12.6i)16-s + (−16.4 − 9.48i)17-s + ⋯
L(s)  = 1  + (−0.973 − 0.227i)2-s + (−0.0261 − 0.999i)3-s + (0.896 + 0.442i)4-s + (0.158 − 0.0576i)5-s + (−0.201 + 0.979i)6-s + (−0.149 − 0.847i)7-s + (−0.772 − 0.634i)8-s + (−0.998 + 0.0523i)9-s + (−0.167 + 0.0201i)10-s + (0.216 + 0.0787i)11-s + (0.418 − 0.908i)12-s + (0.364 − 0.433i)13-s + (−0.0469 + 0.859i)14-s + (−0.0617 − 0.156i)15-s + (0.608 + 0.793i)16-s + (−0.965 − 0.557i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 + 0.146i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.989 + 0.146i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $-0.989 + 0.146i$
Analytic conductor: \(5.88557\)
Root analytic conductor: \(2.42602\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (5, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :1),\ -0.989 + 0.146i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0484310 - 0.655993i\)
\(L(\frac12)\) \(\approx\) \(0.0484310 - 0.655993i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.94 + 0.454i)T \)
3 \( 1 + (0.0785 + 2.99i)T \)
good5 \( 1 + (-0.792 + 0.288i)T + (19.1 - 16.0i)T^{2} \)
7 \( 1 + (1.04 + 5.93i)T + (-46.0 + 16.7i)T^{2} \)
11 \( 1 + (-2.38 - 0.866i)T + (92.6 + 77.7i)T^{2} \)
13 \( 1 + (-4.73 + 5.64i)T + (-29.3 - 166. i)T^{2} \)
17 \( 1 + (16.4 + 9.48i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (-27.5 + 15.9i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (39.0 + 6.89i)T + (497. + 180. i)T^{2} \)
29 \( 1 + (26.6 - 22.3i)T + (146. - 828. i)T^{2} \)
31 \( 1 + (2.03 - 11.5i)T + (-903. - 328. i)T^{2} \)
37 \( 1 + (52.8 + 30.5i)T + (684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (-20.7 + 24.6i)T + (-291. - 1.65e3i)T^{2} \)
43 \( 1 + (1.18 - 3.26i)T + (-1.41e3 - 1.18e3i)T^{2} \)
47 \( 1 + (-27.3 + 4.81i)T + (2.07e3 - 755. i)T^{2} \)
53 \( 1 + 8.35T + 2.80e3T^{2} \)
59 \( 1 + (-47.5 + 17.3i)T + (2.66e3 - 2.23e3i)T^{2} \)
61 \( 1 + (-20.9 + 3.68i)T + (3.49e3 - 1.27e3i)T^{2} \)
67 \( 1 + (-44.6 + 53.2i)T + (-779. - 4.42e3i)T^{2} \)
71 \( 1 + (14.8 + 8.55i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (-0.682 - 1.18i)T + (-2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (21.8 - 18.3i)T + (1.08e3 - 6.14e3i)T^{2} \)
83 \( 1 + (-14.7 + 12.3i)T + (1.19e3 - 6.78e3i)T^{2} \)
89 \( 1 + (-90.3 + 52.1i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (86.4 + 31.4i)T + (7.20e3 + 6.04e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.51509327087752520720199078152, −10.74142937895072134181503679926, −9.566285635510725244698425767278, −8.644289439240077342266346371620, −7.45804527325176124599949692006, −6.98533170011683159724422139435, −5.68902115472267950679184774795, −3.50552859434380529779489007325, −1.95516275521190145134177277260, −0.47630054782563961319921696503, 2.16680641820427195259841450452, 3.81062099211590629866015819789, 5.59399948547914380056796512236, 6.24010556342456729030184570711, 7.891236157201205200365440135782, 8.797040392678648239795083311627, 9.620272845962679274179666273429, 10.27561604194697988410463949334, 11.51726443792352991270397467631, 11.95204791964231315822862896473

Graph of the $Z$-function along the critical line