Properties

Label 2-6e3-216.133-c1-0-20
Degree $2$
Conductor $216$
Sign $0.955 - 0.294i$
Analytic cond. $1.72476$
Root an. cond. $1.31330$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.24 − 0.673i)2-s + (0.0518 + 1.73i)3-s + (1.09 − 1.67i)4-s + (1.55 + 1.84i)5-s + (1.23 + 2.11i)6-s + (−1.49 + 0.544i)7-s + (0.231 − 2.81i)8-s + (−2.99 + 0.179i)9-s + (3.17 + 1.25i)10-s + (−0.102 + 0.122i)11-s + (2.95 + 1.80i)12-s + (3.39 − 0.597i)13-s + (−1.49 + 1.68i)14-s + (−3.12 + 2.78i)15-s + (−1.61 − 3.66i)16-s + (−1.43 − 2.48i)17-s + ⋯
L(s)  = 1  + (0.879 − 0.476i)2-s + (0.0299 + 0.999i)3-s + (0.546 − 0.837i)4-s + (0.693 + 0.826i)5-s + (0.502 + 0.864i)6-s + (−0.565 + 0.205i)7-s + (0.0817 − 0.996i)8-s + (−0.998 + 0.0597i)9-s + (1.00 + 0.396i)10-s + (−0.0308 + 0.0367i)11-s + (0.853 + 0.521i)12-s + (0.940 − 0.165i)13-s + (−0.399 + 0.450i)14-s + (−0.805 + 0.718i)15-s + (−0.402 − 0.915i)16-s + (−0.348 − 0.603i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.955 - 0.294i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.955 - 0.294i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(216\)    =    \(2^{3} \cdot 3^{3}\)
Sign: $0.955 - 0.294i$
Analytic conductor: \(1.72476\)
Root analytic conductor: \(1.31330\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{216} (133, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 216,\ (\ :1/2),\ 0.955 - 0.294i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.98171 + 0.298241i\)
\(L(\frac12)\) \(\approx\) \(1.98171 + 0.298241i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.24 + 0.673i)T \)
3 \( 1 + (-0.0518 - 1.73i)T \)
good5 \( 1 + (-1.55 - 1.84i)T + (-0.868 + 4.92i)T^{2} \)
7 \( 1 + (1.49 - 0.544i)T + (5.36 - 4.49i)T^{2} \)
11 \( 1 + (0.102 - 0.122i)T + (-1.91 - 10.8i)T^{2} \)
13 \( 1 + (-3.39 + 0.597i)T + (12.2 - 4.44i)T^{2} \)
17 \( 1 + (1.43 + 2.48i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (3.75 + 2.16i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-2.14 - 0.781i)T + (17.6 + 14.7i)T^{2} \)
29 \( 1 + (-8.60 - 1.51i)T + (27.2 + 9.91i)T^{2} \)
31 \( 1 + (6.69 + 2.43i)T + (23.7 + 19.9i)T^{2} \)
37 \( 1 + (5.14 - 2.97i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (1.74 + 9.90i)T + (-38.5 + 14.0i)T^{2} \)
43 \( 1 + (7.59 - 9.05i)T + (-7.46 - 42.3i)T^{2} \)
47 \( 1 + (-3.66 + 1.33i)T + (36.0 - 30.2i)T^{2} \)
53 \( 1 - 9.80iT - 53T^{2} \)
59 \( 1 + (-1.72 - 2.05i)T + (-10.2 + 58.1i)T^{2} \)
61 \( 1 + (0.492 + 1.35i)T + (-46.7 + 39.2i)T^{2} \)
67 \( 1 + (-0.225 + 0.0397i)T + (62.9 - 22.9i)T^{2} \)
71 \( 1 + (-2.82 - 4.88i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-7.14 + 12.3i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (2.18 - 12.3i)T + (-74.2 - 27.0i)T^{2} \)
83 \( 1 + (-11.1 - 1.95i)T + (77.9 + 28.3i)T^{2} \)
89 \( 1 + (3.73 - 6.46i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-5.17 - 4.34i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.37167269514584702516815186183, −11.13317332775561649162785855778, −10.62639812152095762281929444352, −9.778221631896865136568455997986, −8.809013700082969397079119795015, −6.75865102868778297988981869217, −6.00226336412011008176044115285, −4.84880023122399940069931329267, −3.50669132139941559161663830537, −2.54814644185125516427538358639, 1.84448699220802643999315152356, 3.53487302134121306703463587222, 5.11999355828027466363555814959, 6.19735188495666924782403583450, 6.80050525478674444767263377899, 8.257906772489456074748152773646, 8.860606333185815299198246096670, 10.54951294448426034152547209800, 11.73488948120645073836129490727, 12.78014295565693483184367266964

Graph of the $Z$-function along the critical line