Properties

Label 2-2151-1.1-c3-0-6
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.50·2-s − 5.73·4-s − 18.0·5-s − 23.9·7-s + 20.6·8-s + 27.2·10-s + 55.0·11-s − 40.0·13-s + 35.9·14-s + 14.7·16-s − 46.7·17-s + 116.·19-s + 103.·20-s − 82.8·22-s − 131.·23-s + 201.·25-s + 60.2·26-s + 137.·28-s − 268.·29-s − 82.3·31-s − 187.·32-s + 70.4·34-s + 432.·35-s − 208.·37-s − 175.·38-s − 373.·40-s + 112.·41-s + ⋯
L(s)  = 1  − 0.532·2-s − 0.716·4-s − 1.61·5-s − 1.29·7-s + 0.913·8-s + 0.860·10-s + 1.50·11-s − 0.854·13-s + 0.686·14-s + 0.230·16-s − 0.667·17-s + 1.40·19-s + 1.15·20-s − 0.803·22-s − 1.19·23-s + 1.61·25-s + 0.454·26-s + 0.925·28-s − 1.72·29-s − 0.476·31-s − 1.03·32-s + 0.355·34-s + 2.08·35-s − 0.926·37-s − 0.748·38-s − 1.47·40-s + 0.427·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.008505511643\)
\(L(\frac12)\) \(\approx\) \(0.008505511643\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 + 1.50T + 8T^{2} \)
5 \( 1 + 18.0T + 125T^{2} \)
7 \( 1 + 23.9T + 343T^{2} \)
11 \( 1 - 55.0T + 1.33e3T^{2} \)
13 \( 1 + 40.0T + 2.19e3T^{2} \)
17 \( 1 + 46.7T + 4.91e3T^{2} \)
19 \( 1 - 116.T + 6.85e3T^{2} \)
23 \( 1 + 131.T + 1.21e4T^{2} \)
29 \( 1 + 268.T + 2.43e4T^{2} \)
31 \( 1 + 82.3T + 2.97e4T^{2} \)
37 \( 1 + 208.T + 5.06e4T^{2} \)
41 \( 1 - 112.T + 6.89e4T^{2} \)
43 \( 1 - 14.9T + 7.95e4T^{2} \)
47 \( 1 + 509.T + 1.03e5T^{2} \)
53 \( 1 - 58.4T + 1.48e5T^{2} \)
59 \( 1 + 272.T + 2.05e5T^{2} \)
61 \( 1 + 102.T + 2.26e5T^{2} \)
67 \( 1 + 203.T + 3.00e5T^{2} \)
71 \( 1 + 791.T + 3.57e5T^{2} \)
73 \( 1 + 807.T + 3.89e5T^{2} \)
79 \( 1 - 211.T + 4.93e5T^{2} \)
83 \( 1 - 251.T + 5.71e5T^{2} \)
89 \( 1 + 1.15e3T + 7.04e5T^{2} \)
97 \( 1 - 422.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.889790283949332864251908654539, −7.910640906383749406203043819611, −7.33260001640551355111839081488, −6.69501877583507319641756213177, −5.52603509694640807457750184661, −4.38098539079021888849368714520, −3.84130494768077176589710200348, −3.20177724469319619476771915246, −1.46024666740895055993043876092, −0.04780773724181678181415320957, 0.04780773724181678181415320957, 1.46024666740895055993043876092, 3.20177724469319619476771915246, 3.84130494768077176589710200348, 4.38098539079021888849368714520, 5.52603509694640807457750184661, 6.69501877583507319641756213177, 7.33260001640551355111839081488, 7.910640906383749406203043819611, 8.889790283949332864251908654539

Graph of the $Z$-function along the critical line