Properties

Label 2-2151-1.1-c3-0-148
Degree $2$
Conductor $2151$
Sign $1$
Analytic cond. $126.913$
Root an. cond. $11.2655$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.64·2-s − 5.30·4-s + 14.9·5-s + 8.99·7-s − 21.8·8-s + 24.5·10-s + 38.0·11-s + 48.4·13-s + 14.7·14-s + 6.54·16-s + 67.1·17-s − 150.·19-s − 79.3·20-s + 62.5·22-s + 178.·23-s + 98.7·25-s + 79.6·26-s − 47.6·28-s + 207.·29-s + 3.02·31-s + 185.·32-s + 110.·34-s + 134.·35-s − 202.·37-s − 246.·38-s − 326.·40-s − 137.·41-s + ⋯
L(s)  = 1  + 0.580·2-s − 0.662·4-s + 1.33·5-s + 0.485·7-s − 0.965·8-s + 0.776·10-s + 1.04·11-s + 1.03·13-s + 0.281·14-s + 0.102·16-s + 0.958·17-s − 1.81·19-s − 0.886·20-s + 0.606·22-s + 1.62·23-s + 0.790·25-s + 0.600·26-s − 0.321·28-s + 1.32·29-s + 0.0175·31-s + 1.02·32-s + 0.556·34-s + 0.649·35-s − 0.900·37-s − 1.05·38-s − 1.29·40-s − 0.524·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2151 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2151\)    =    \(3^{2} \cdot 239\)
Sign: $1$
Analytic conductor: \(126.913\)
Root analytic conductor: \(11.2655\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2151,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.134324772\)
\(L(\frac12)\) \(\approx\) \(4.134324772\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
239 \( 1 - 239T \)
good2 \( 1 - 1.64T + 8T^{2} \)
5 \( 1 - 14.9T + 125T^{2} \)
7 \( 1 - 8.99T + 343T^{2} \)
11 \( 1 - 38.0T + 1.33e3T^{2} \)
13 \( 1 - 48.4T + 2.19e3T^{2} \)
17 \( 1 - 67.1T + 4.91e3T^{2} \)
19 \( 1 + 150.T + 6.85e3T^{2} \)
23 \( 1 - 178.T + 1.21e4T^{2} \)
29 \( 1 - 207.T + 2.43e4T^{2} \)
31 \( 1 - 3.02T + 2.97e4T^{2} \)
37 \( 1 + 202.T + 5.06e4T^{2} \)
41 \( 1 + 137.T + 6.89e4T^{2} \)
43 \( 1 + 3.56T + 7.95e4T^{2} \)
47 \( 1 + 29.9T + 1.03e5T^{2} \)
53 \( 1 - 199.T + 1.48e5T^{2} \)
59 \( 1 + 6.04T + 2.05e5T^{2} \)
61 \( 1 + 75.2T + 2.26e5T^{2} \)
67 \( 1 - 1.01e3T + 3.00e5T^{2} \)
71 \( 1 + 326.T + 3.57e5T^{2} \)
73 \( 1 + 533.T + 3.89e5T^{2} \)
79 \( 1 - 416.T + 4.93e5T^{2} \)
83 \( 1 - 22.6T + 5.71e5T^{2} \)
89 \( 1 - 950.T + 7.04e5T^{2} \)
97 \( 1 + 1.23e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.737830726266520996263774933787, −8.304179204386368157523186795776, −6.74168663105822296647131333277, −6.29147436841249131270602261772, −5.48487434018142727910984420439, −4.79052446178373634186389921557, −3.91403631972622110501372421117, −3.00050739165003562619099618798, −1.75554663745781780190167112929, −0.918576106422944849409351070260, 0.918576106422944849409351070260, 1.75554663745781780190167112929, 3.00050739165003562619099618798, 3.91403631972622110501372421117, 4.79052446178373634186389921557, 5.48487434018142727910984420439, 6.29147436841249131270602261772, 6.74168663105822296647131333277, 8.304179204386368157523186795776, 8.737830726266520996263774933787

Graph of the $Z$-function along the critical line