Properties

Label 2-215-1.1-c5-0-10
Degree $2$
Conductor $215$
Sign $1$
Analytic cond. $34.4825$
Root an. cond. $5.87218$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.10·2-s + 9.59·3-s + 33.6·4-s + 25·5-s − 77.7·6-s − 225.·7-s − 13.5·8-s − 150.·9-s − 202.·10-s − 739.·11-s + 323.·12-s + 220.·13-s + 1.82e3·14-s + 239.·15-s − 967.·16-s + 899.·17-s + 1.22e3·18-s + 407.·19-s + 841.·20-s − 2.15e3·21-s + 5.99e3·22-s − 402.·23-s − 129.·24-s + 625·25-s − 1.78e3·26-s − 3.77e3·27-s − 7.58e3·28-s + ⋯
L(s)  = 1  − 1.43·2-s + 0.615·3-s + 1.05·4-s + 0.447·5-s − 0.881·6-s − 1.73·7-s − 0.0747·8-s − 0.621·9-s − 0.640·10-s − 1.84·11-s + 0.647·12-s + 0.362·13-s + 2.48·14-s + 0.275·15-s − 0.945·16-s + 0.754·17-s + 0.889·18-s + 0.259·19-s + 0.470·20-s − 1.06·21-s + 2.64·22-s − 0.158·23-s − 0.0459·24-s + 0.200·25-s − 0.518·26-s − 0.997·27-s − 1.82·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 215 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 215 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(215\)    =    \(5 \cdot 43\)
Sign: $1$
Analytic conductor: \(34.4825\)
Root analytic conductor: \(5.87218\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 215,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.5729585369\)
\(L(\frac12)\) \(\approx\) \(0.5729585369\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
43 \( 1 + 1.84e3T \)
good2 \( 1 + 8.10T + 32T^{2} \)
3 \( 1 - 9.59T + 243T^{2} \)
7 \( 1 + 225.T + 1.68e4T^{2} \)
11 \( 1 + 739.T + 1.61e5T^{2} \)
13 \( 1 - 220.T + 3.71e5T^{2} \)
17 \( 1 - 899.T + 1.41e6T^{2} \)
19 \( 1 - 407.T + 2.47e6T^{2} \)
23 \( 1 + 402.T + 6.43e6T^{2} \)
29 \( 1 - 5.51e3T + 2.05e7T^{2} \)
31 \( 1 + 649.T + 2.86e7T^{2} \)
37 \( 1 + 1.07e4T + 6.93e7T^{2} \)
41 \( 1 - 1.35e4T + 1.15e8T^{2} \)
47 \( 1 + 1.34e4T + 2.29e8T^{2} \)
53 \( 1 + 2.10e3T + 4.18e8T^{2} \)
59 \( 1 - 3.82e3T + 7.14e8T^{2} \)
61 \( 1 + 3.09e3T + 8.44e8T^{2} \)
67 \( 1 - 6.39e4T + 1.35e9T^{2} \)
71 \( 1 - 6.03e4T + 1.80e9T^{2} \)
73 \( 1 - 5.27e4T + 2.07e9T^{2} \)
79 \( 1 + 4.01e3T + 3.07e9T^{2} \)
83 \( 1 + 1.02e5T + 3.93e9T^{2} \)
89 \( 1 - 1.10e5T + 5.58e9T^{2} \)
97 \( 1 - 9.28e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.91522360646167686803765383689, −10.06873506978186275250001834568, −9.572940781948926011327783882000, −8.560024094341833702830684423424, −7.81194221508058017834123189888, −6.64877988680094143604691994840, −5.45607106090744336055785712714, −3.25177525130509162691033083574, −2.38843988022144906232913540507, −0.52024909961347291266822264363, 0.52024909961347291266822264363, 2.38843988022144906232913540507, 3.25177525130509162691033083574, 5.45607106090744336055785712714, 6.64877988680094143604691994840, 7.81194221508058017834123189888, 8.560024094341833702830684423424, 9.572940781948926011327783882000, 10.06873506978186275250001834568, 10.91522360646167686803765383689

Graph of the $Z$-function along the critical line