L(s) = 1 | + i·2-s − 4-s + (−0.480 − 0.480i)5-s + (−0.707 + 0.707i)7-s − i·8-s + (0.480 − 0.480i)10-s + (−1.10 + 1.10i)11-s + 0.639·13-s + (−0.707 − 0.707i)14-s + 16-s + (−4.08 − 0.569i)17-s + 0.314i·19-s + (0.480 + 0.480i)20-s + (−1.10 − 1.10i)22-s + (6.69 − 6.69i)23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (−0.214 − 0.214i)5-s + (−0.267 + 0.267i)7-s − 0.353i·8-s + (0.151 − 0.151i)10-s + (−0.334 + 0.334i)11-s + 0.177·13-s + (−0.188 − 0.188i)14-s + 0.250·16-s + (−0.990 − 0.138i)17-s + 0.0721i·19-s + (0.107 + 0.107i)20-s + (−0.236 − 0.236i)22-s + (1.39 − 1.39i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0160i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0160i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.250629871\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.250629871\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 + (4.08 + 0.569i)T \) |
good | 5 | \( 1 + (0.480 + 0.480i)T + 5iT^{2} \) |
| 11 | \( 1 + (1.10 - 1.10i)T - 11iT^{2} \) |
| 13 | \( 1 - 0.639T + 13T^{2} \) |
| 19 | \( 1 - 0.314iT - 19T^{2} \) |
| 23 | \( 1 + (-6.69 + 6.69i)T - 23iT^{2} \) |
| 29 | \( 1 + (1.26 + 1.26i)T + 29iT^{2} \) |
| 31 | \( 1 + (-3.32 - 3.32i)T + 31iT^{2} \) |
| 37 | \( 1 + (-0.505 - 0.505i)T + 37iT^{2} \) |
| 41 | \( 1 + (-0.136 + 0.136i)T - 41iT^{2} \) |
| 43 | \( 1 - 8.12iT - 43T^{2} \) |
| 47 | \( 1 + 0.181T + 47T^{2} \) |
| 53 | \( 1 + 2.80iT - 53T^{2} \) |
| 59 | \( 1 + 3.70iT - 59T^{2} \) |
| 61 | \( 1 + (-7.57 + 7.57i)T - 61iT^{2} \) |
| 67 | \( 1 - 7.60T + 67T^{2} \) |
| 71 | \( 1 + (7.52 + 7.52i)T + 71iT^{2} \) |
| 73 | \( 1 + (-0.625 - 0.625i)T + 73iT^{2} \) |
| 79 | \( 1 + (-11.2 + 11.2i)T - 79iT^{2} \) |
| 83 | \( 1 + 11.9iT - 83T^{2} \) |
| 89 | \( 1 - 3.81T + 89T^{2} \) |
| 97 | \( 1 + (-10.6 - 10.6i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.840853059847511659324057680816, −8.388499775165990535123126696603, −7.50836681265220034750592884008, −6.61855173630660182479557576441, −6.18998026434642427343166434911, −4.88489583657716328087193855767, −4.60600681127939852448864901847, −3.32287871595360253994399330819, −2.25987384128949279712779456282, −0.55640347045015894308801032948,
0.969727431518254309246138601483, 2.28131826024987110933803627555, 3.27487304109395990210563805301, 3.95146155692972265641358924814, 5.00778893789061676694229152702, 5.78160436373824515346894888631, 6.89622861711953758364816716985, 7.49489358494071176176704960142, 8.527563189762936911630821623609, 9.143571531435095750079646282222