L(s) = 1 | + i·2-s − 4-s + (−2.63 + 2.63i)5-s + (−0.707 − 0.707i)7-s − i·8-s + (−2.63 − 2.63i)10-s + (2.31 + 2.31i)11-s − 5.14·13-s + (0.707 − 0.707i)14-s + 16-s + (−4.01 − 0.934i)17-s − 3.27i·19-s + (2.63 − 2.63i)20-s + (−2.31 + 2.31i)22-s + (0.807 + 0.807i)23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + (−1.17 + 1.17i)5-s + (−0.267 − 0.267i)7-s − 0.353i·8-s + (−0.833 − 0.833i)10-s + (0.697 + 0.697i)11-s − 1.42·13-s + (0.188 − 0.188i)14-s + 0.250·16-s + (−0.973 − 0.226i)17-s − 0.750i·19-s + (0.589 − 0.589i)20-s + (−0.493 + 0.493i)22-s + (0.168 + 0.168i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.938 + 0.344i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.938 + 0.344i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4777170183\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4777170183\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
| 17 | \( 1 + (4.01 + 0.934i)T \) |
good | 5 | \( 1 + (2.63 - 2.63i)T - 5iT^{2} \) |
| 11 | \( 1 + (-2.31 - 2.31i)T + 11iT^{2} \) |
| 13 | \( 1 + 5.14T + 13T^{2} \) |
| 19 | \( 1 + 3.27iT - 19T^{2} \) |
| 23 | \( 1 + (-0.807 - 0.807i)T + 23iT^{2} \) |
| 29 | \( 1 + (-1.31 + 1.31i)T - 29iT^{2} \) |
| 31 | \( 1 + (4 - 4i)T - 31iT^{2} \) |
| 37 | \( 1 + (-3.77 + 3.77i)T - 37iT^{2} \) |
| 41 | \( 1 + (-0.950 - 0.950i)T + 41iT^{2} \) |
| 43 | \( 1 + 2.24iT - 43T^{2} \) |
| 47 | \( 1 - 4.62T + 47T^{2} \) |
| 53 | \( 1 - 7.17iT - 53T^{2} \) |
| 59 | \( 1 - 5.86iT - 59T^{2} \) |
| 61 | \( 1 + (9.15 + 9.15i)T + 61iT^{2} \) |
| 67 | \( 1 + 4.88T + 67T^{2} \) |
| 71 | \( 1 + (-10.3 + 10.3i)T - 71iT^{2} \) |
| 73 | \( 1 + (-9.70 + 9.70i)T - 73iT^{2} \) |
| 79 | \( 1 + (-7.27 - 7.27i)T + 79iT^{2} \) |
| 83 | \( 1 + 2.13iT - 83T^{2} \) |
| 89 | \( 1 + 8.41T + 89T^{2} \) |
| 97 | \( 1 + (-10.7 + 10.7i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.092787355251971887106423789490, −7.935961125489580108555500556312, −7.20283497220683116480969121854, −7.04317069440826118147449431908, −6.21711177500643236739204712333, −4.84132543524760960276310259952, −4.28756538068594581285890886486, −3.34327241636378330012201467931, −2.35313403281519265024138900995, −0.22039654529195074183272085401,
0.892465392689106097668495631757, 2.23329387912054759240510963030, 3.43767228501336874375045766636, 4.20383728820065567751398431701, 4.83513278395847406517030918329, 5.76240984244223351732921479888, 6.89504244103476091069380205153, 7.86888013661374720147918657358, 8.453506194006740019130439406213, 9.158656494129576627846758083347