| L(s) = 1 | + 2·2-s + 3·4-s − 2·5-s − 2·7-s + 4·8-s − 4·10-s − 6·11-s + 4·13-s − 4·14-s + 5·16-s − 2·17-s − 8·19-s − 6·20-s − 12·22-s − 16·23-s − 2·25-s + 8·26-s − 6·28-s − 2·29-s − 12·31-s + 6·32-s − 4·34-s + 4·35-s − 2·37-s − 16·38-s − 8·40-s + 16·41-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 3/2·4-s − 0.894·5-s − 0.755·7-s + 1.41·8-s − 1.26·10-s − 1.80·11-s + 1.10·13-s − 1.06·14-s + 5/4·16-s − 0.485·17-s − 1.83·19-s − 1.34·20-s − 2.55·22-s − 3.33·23-s − 2/5·25-s + 1.56·26-s − 1.13·28-s − 0.371·29-s − 2.15·31-s + 1.06·32-s − 0.685·34-s + 0.676·35-s − 0.328·37-s − 2.59·38-s − 1.26·40-s + 2.49·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4588164 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4588164 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.530487579100839530958061451392, −8.519643170441479184196798350180, −7.906608943505178757293760547220, −7.79876486141602146032934699339, −7.22116646065203033464362963348, −6.98309760699053505568548655819, −6.16524167532584390439964660991, −6.14553919480875602965460249142, −5.62455075351154074304458195750, −5.57243703951730312572015805950, −4.65859373517202542072828387902, −4.28795130737825788549991806637, −3.86630398631097085718473349476, −3.84331465544391044260854174398, −3.17318402346990975243291590030, −2.52251175298772374350130819622, −2.15968805105653392566630340750, −1.69977336870992701193419165366, 0, 0,
1.69977336870992701193419165366, 2.15968805105653392566630340750, 2.52251175298772374350130819622, 3.17318402346990975243291590030, 3.84331465544391044260854174398, 3.86630398631097085718473349476, 4.28795130737825788549991806637, 4.65859373517202542072828387902, 5.57243703951730312572015805950, 5.62455075351154074304458195750, 6.14553919480875602965460249142, 6.16524167532584390439964660991, 6.98309760699053505568548655819, 7.22116646065203033464362963348, 7.79876486141602146032934699339, 7.906608943505178757293760547220, 8.519643170441479184196798350180, 8.530487579100839530958061451392