L(s) = 1 | + (1.41 − i)3-s + 2·5-s + 4.44i·7-s + (1.00 − 2.82i)9-s + i·11-s + 3.46i·13-s + (2.82 − 2i)15-s + 4.87i·17-s + 0.778·19-s + (4.44 + 6.29i)21-s − 6.29·23-s − 25-s + (−1.41 − 5.00i)27-s + 5.34·29-s + 6.89i·31-s + ⋯ |
L(s) = 1 | + (0.816 − 0.577i)3-s + 0.894·5-s + 1.68i·7-s + (0.333 − 0.942i)9-s + 0.301i·11-s + 0.960i·13-s + (0.730 − 0.516i)15-s + 1.18i·17-s + 0.178·19-s + (0.970 + 1.37i)21-s − 1.31·23-s − 0.200·25-s + (−0.272 − 0.962i)27-s + 0.993·29-s + 1.23i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.639 - 0.769i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.639 - 0.769i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.644449765\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.644449765\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.41 + i)T \) |
| 11 | \( 1 - iT \) |
good | 5 | \( 1 - 2T + 5T^{2} \) |
| 7 | \( 1 - 4.44iT - 7T^{2} \) |
| 13 | \( 1 - 3.46iT - 13T^{2} \) |
| 17 | \( 1 - 4.87iT - 17T^{2} \) |
| 19 | \( 1 - 0.778T + 19T^{2} \) |
| 23 | \( 1 + 6.29T + 23T^{2} \) |
| 29 | \( 1 - 5.34T + 29T^{2} \) |
| 31 | \( 1 - 6.89iT - 31T^{2} \) |
| 37 | \( 1 - 2.19iT - 37T^{2} \) |
| 41 | \( 1 + 7.70iT - 41T^{2} \) |
| 43 | \( 1 + 2.04T + 43T^{2} \) |
| 47 | \( 1 - 2.82T + 47T^{2} \) |
| 53 | \( 1 - 2.89T + 53T^{2} \) |
| 59 | \( 1 - 9.79iT - 59T^{2} \) |
| 61 | \( 1 + 9.12iT - 61T^{2} \) |
| 67 | \( 1 + 9.75T + 67T^{2} \) |
| 71 | \( 1 - 8.48T + 71T^{2} \) |
| 73 | \( 1 - 6.89T + 73T^{2} \) |
| 79 | \( 1 + 9.34iT - 79T^{2} \) |
| 83 | \( 1 - 9.79iT - 83T^{2} \) |
| 89 | \( 1 + 13.8iT - 89T^{2} \) |
| 97 | \( 1 - 12T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.981669806350702781514718854700, −8.648459615070704516356236432196, −7.83317475552918430965849585296, −6.69022056823308288705117156071, −6.16319141848108334524973801434, −5.45507418695723043457559453410, −4.25568907207394550407837375599, −3.11696989155151103213255535696, −2.07000817107493763300059651102, −1.78037916855648159243815129263,
0.813473156736066260456472951044, 2.19585265629606278500265592230, 3.17706765477617536544228281817, 4.02333627599372337938822571447, 4.81399667019817835641853241022, 5.75329801299096214803486478490, 6.73157856921645746275271082455, 7.72791281244050089864153257615, 8.009981916662377241930101886834, 9.189861662460443470790069272147