L(s) = 1 | + (−1.41 + i)3-s + 2·5-s + 0.449i·7-s + (1.00 − 2.82i)9-s − i·11-s − 3.46i·13-s + (−2.82 + 2i)15-s − 2.04i·17-s − 7.70·19-s + (−0.449 − 0.635i)21-s − 0.635·23-s − 25-s + (1.41 + 5.00i)27-s − 9.34·29-s + 2.89i·31-s + ⋯ |
L(s) = 1 | + (−0.816 + 0.577i)3-s + 0.894·5-s + 0.169i·7-s + (0.333 − 0.942i)9-s − 0.301i·11-s − 0.960i·13-s + (−0.730 + 0.516i)15-s − 0.497i·17-s − 1.76·19-s + (−0.0980 − 0.138i)21-s − 0.132·23-s − 0.200·25-s + (0.272 + 0.962i)27-s − 1.73·29-s + 0.520i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.938 + 0.346i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.938 + 0.346i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.05870761400\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.05870761400\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.41 - i)T \) |
| 11 | \( 1 + iT \) |
good | 5 | \( 1 - 2T + 5T^{2} \) |
| 7 | \( 1 - 0.449iT - 7T^{2} \) |
| 13 | \( 1 + 3.46iT - 13T^{2} \) |
| 17 | \( 1 + 2.04iT - 17T^{2} \) |
| 19 | \( 1 + 7.70T + 19T^{2} \) |
| 23 | \( 1 + 0.635T + 23T^{2} \) |
| 29 | \( 1 + 9.34T + 29T^{2} \) |
| 31 | \( 1 - 2.89iT - 31T^{2} \) |
| 37 | \( 1 - 9.12iT - 37T^{2} \) |
| 41 | \( 1 + 0.778iT - 41T^{2} \) |
| 43 | \( 1 + 4.87T + 43T^{2} \) |
| 47 | \( 1 + 2.82T + 47T^{2} \) |
| 53 | \( 1 + 6.89T + 53T^{2} \) |
| 59 | \( 1 - 9.79iT - 59T^{2} \) |
| 61 | \( 1 + 2.19iT - 61T^{2} \) |
| 67 | \( 1 + 4.09T + 67T^{2} \) |
| 71 | \( 1 + 8.48T + 71T^{2} \) |
| 73 | \( 1 + 2.89T + 73T^{2} \) |
| 79 | \( 1 + 5.34iT - 79T^{2} \) |
| 83 | \( 1 - 9.79iT - 83T^{2} \) |
| 89 | \( 1 - 13.8iT - 89T^{2} \) |
| 97 | \( 1 - 12T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.942721207735521173303544161034, −8.085691753970244064988114339821, −6.95514095660109968780862910778, −6.15525952770751630740453267232, −5.63989811977158387092715045026, −4.88862706767651440982502489783, −3.91422966473477744134249838517, −2.84324942980960665980983648465, −1.59104106857047945633466112636, −0.02120086238198046812986984360,
1.78535843240288460388494133151, 2.11231206781878870661131921048, 3.91361350548809778936838609222, 4.68784444794374693328413738510, 5.77579379695175694375963586757, 6.17937601308171528066160776872, 6.97986561844950169942843253880, 7.71207193854566948994642699160, 8.717649959456335555707893317317, 9.496561721012174096565870910616