Properties

Label 2-2112-88.43-c1-0-43
Degree $2$
Conductor $2112$
Sign $-0.524 + 0.851i$
Analytic cond. $16.8644$
Root an. cond. $4.10662$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2.39i·5-s − 1.09·7-s + 9-s + (2.27 + 2.41i)11-s − 3.59·13-s − 2.39i·15-s − 5.49i·17-s − 7.68i·19-s − 1.09·21-s + 3.06i·23-s − 0.756·25-s + 27-s − 8.48·29-s + 0.243i·31-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.07i·5-s − 0.414·7-s + 0.333·9-s + (0.686 + 0.726i)11-s − 0.996·13-s − 0.619i·15-s − 1.33i·17-s − 1.76i·19-s − 0.239·21-s + 0.639i·23-s − 0.151·25-s + 0.192·27-s − 1.57·29-s + 0.0437i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.524 + 0.851i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.524 + 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2112\)    =    \(2^{6} \cdot 3 \cdot 11\)
Sign: $-0.524 + 0.851i$
Analytic conductor: \(16.8644\)
Root analytic conductor: \(4.10662\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2112} (1759, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2112,\ (\ :1/2),\ -0.524 + 0.851i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.500839419\)
\(L(\frac12)\) \(\approx\) \(1.500839419\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 + (-2.27 - 2.41i)T \)
good5 \( 1 + 2.39iT - 5T^{2} \)
7 \( 1 + 1.09T + 7T^{2} \)
13 \( 1 + 3.59T + 13T^{2} \)
17 \( 1 + 5.49iT - 17T^{2} \)
19 \( 1 + 7.68iT - 19T^{2} \)
23 \( 1 - 3.06iT - 23T^{2} \)
29 \( 1 + 8.48T + 29T^{2} \)
31 \( 1 - 0.243iT - 31T^{2} \)
37 \( 1 + 3.09iT - 37T^{2} \)
41 \( 1 - 6.51iT - 41T^{2} \)
43 \( 1 + 3.29iT - 43T^{2} \)
47 \( 1 + 6.95iT - 47T^{2} \)
53 \( 1 + 10.7iT - 53T^{2} \)
59 \( 1 + 5.88T + 59T^{2} \)
61 \( 1 - 11.0T + 61T^{2} \)
67 \( 1 - 15.3T + 67T^{2} \)
71 \( 1 + 6.15iT - 71T^{2} \)
73 \( 1 - 5.98iT - 73T^{2} \)
79 \( 1 + 10.7T + 79T^{2} \)
83 \( 1 + 7.18iT - 83T^{2} \)
89 \( 1 + 4.92T + 89T^{2} \)
97 \( 1 + 17.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.082112300154449194819673815249, −8.149905515627108004372155145230, −7.11757295534705799759460344074, −6.89641656231006232086683938171, −5.31305298667918247723661011999, −4.87571439688993982405718209064, −3.96337111853902930289920270652, −2.85064630438315993686086337560, −1.86832274611943964403603775505, −0.46863513131941846632020402715, 1.62245855572617239872207601986, 2.69720145323862677588816202363, 3.55394596942890085801312219799, 4.13159674287174109083535238737, 5.63240548504917212125657093197, 6.29743817678006456408360024756, 7.02123362795878531919929310556, 7.85122089035764027545637470072, 8.489274500425042057023678148432, 9.470253051162879380786143899419

Graph of the $Z$-function along the critical line