L(s) = 1 | + 3-s + 3.78i·5-s + 3.68·7-s + 9-s + (0.386 + 3.29i)11-s + 5.10·13-s + 3.78i·15-s − 1.27i·17-s + 6.09i·19-s + 3.68·21-s + 2.32i·23-s − 9.34·25-s + 27-s − 3.97·29-s − 8.34i·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.69i·5-s + 1.39·7-s + 0.333·9-s + (0.116 + 0.993i)11-s + 1.41·13-s + 0.978i·15-s − 0.308i·17-s + 1.39i·19-s + 0.804·21-s + 0.484i·23-s − 1.86·25-s + 0.192·27-s − 0.737·29-s − 1.49i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.144 - 0.989i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.144 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.772138714\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.772138714\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 11 | \( 1 + (-0.386 - 3.29i)T \) |
good | 5 | \( 1 - 3.78iT - 5T^{2} \) |
| 7 | \( 1 - 3.68T + 7T^{2} \) |
| 13 | \( 1 - 5.10T + 13T^{2} \) |
| 17 | \( 1 + 1.27iT - 17T^{2} \) |
| 19 | \( 1 - 6.09iT - 19T^{2} \) |
| 23 | \( 1 - 2.32iT - 23T^{2} \) |
| 29 | \( 1 + 3.97T + 29T^{2} \) |
| 31 | \( 1 + 8.34iT - 31T^{2} \) |
| 37 | \( 1 + 6.23iT - 37T^{2} \) |
| 41 | \( 1 + 4.90iT - 41T^{2} \) |
| 43 | \( 1 + 8.64iT - 43T^{2} \) |
| 47 | \( 1 - 3.01iT - 47T^{2} \) |
| 53 | \( 1 + 9.33iT - 53T^{2} \) |
| 59 | \( 1 + 12.9T + 59T^{2} \) |
| 61 | \( 1 - 15.4T + 61T^{2} \) |
| 67 | \( 1 + 0.803T + 67T^{2} \) |
| 71 | \( 1 + 8.56iT - 71T^{2} \) |
| 73 | \( 1 - 5.39iT - 73T^{2} \) |
| 79 | \( 1 + 9.49T + 79T^{2} \) |
| 83 | \( 1 - 10.2iT - 83T^{2} \) |
| 89 | \( 1 - 8.92T + 89T^{2} \) |
| 97 | \( 1 - 2.02T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.314280764724000854127181132819, −8.297804086887016989129197203645, −7.66338671488653389145902190878, −7.18021332412566904095450292664, −6.20209510226726919754188562810, −5.39662142638799947727614382221, −4.00894014259505828660595302711, −3.64543553216143617603934472651, −2.29239608194530474127470690698, −1.70541185075550218790700153841,
1.03133206005767645287244964371, 1.57445260653300282773650788268, 3.07766748345200584021743506265, 4.22009297936935293834770100586, 4.78805014112833687980046586764, 5.54585843885543327790926205737, 6.51295667758448249736753664839, 7.79777740996722338383375656015, 8.379585804798683798958797733567, 8.746449594396521908529939316937