L(s) = 1 | + 3-s + 1.05i·5-s + 1.97·7-s + 9-s + (−1.38 + 3.01i)11-s − 0.762·13-s + 1.05i·15-s + 4.17i·17-s + 0.233i·19-s + 1.97·21-s + 2.52i·23-s + 3.88·25-s + 27-s − 5.62·29-s − 4.88i·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.472i·5-s + 0.745·7-s + 0.333·9-s + (−0.418 + 0.908i)11-s − 0.211·13-s + 0.272i·15-s + 1.01i·17-s + 0.0536i·19-s + 0.430·21-s + 0.525i·23-s + 0.776·25-s + 0.192·27-s − 1.04·29-s − 0.877i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.168 - 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.168 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.106637888\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.106637888\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 11 | \( 1 + (1.38 - 3.01i)T \) |
good | 5 | \( 1 - 1.05iT - 5T^{2} \) |
| 7 | \( 1 - 1.97T + 7T^{2} \) |
| 13 | \( 1 + 0.762T + 13T^{2} \) |
| 17 | \( 1 - 4.17iT - 17T^{2} \) |
| 19 | \( 1 - 0.233iT - 19T^{2} \) |
| 23 | \( 1 - 2.52iT - 23T^{2} \) |
| 29 | \( 1 + 5.62T + 29T^{2} \) |
| 31 | \( 1 + 4.88iT - 31T^{2} \) |
| 37 | \( 1 - 2.69iT - 37T^{2} \) |
| 41 | \( 1 - 8.67iT - 41T^{2} \) |
| 43 | \( 1 - 8.12iT - 43T^{2} \) |
| 47 | \( 1 + 1.71iT - 47T^{2} \) |
| 53 | \( 1 + 2.60iT - 53T^{2} \) |
| 59 | \( 1 - 9.92T + 59T^{2} \) |
| 61 | \( 1 + 7.34T + 61T^{2} \) |
| 67 | \( 1 - 5.33T + 67T^{2} \) |
| 71 | \( 1 - 0.171iT - 71T^{2} \) |
| 73 | \( 1 + 2.88iT - 73T^{2} \) |
| 79 | \( 1 - 14.0T + 79T^{2} \) |
| 83 | \( 1 - 1.52iT - 83T^{2} \) |
| 89 | \( 1 - 8.92T + 89T^{2} \) |
| 97 | \( 1 + 0.565T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.389458219221976414662682021390, −8.256698491236753905185405013668, −7.86612551057643498988987707839, −7.08322638530895278110730459393, −6.22751456262356330486767041594, −5.14485242826817016623296043312, −4.39714935899227359586102983266, −3.43220706335004486886470373346, −2.38888722212299006005864383781, −1.53822282815987665171445140373,
0.68984061654421094905123191109, 2.01142726700114263297828068257, 2.98840799850157872133902256163, 3.97659692244512612592675126978, 5.01495168331473759015306701351, 5.47212170793784007780763597253, 6.75626818980069702210373766146, 7.50131278088387648698849692084, 8.266801882849802052750147335204, 8.858224763669565301447866036649