Properties

Label 2-2112-88.43-c1-0-26
Degree $2$
Conductor $2112$
Sign $0.914 - 0.403i$
Analytic cond. $16.8644$
Root an. cond. $4.10662$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 1.66i·5-s + 3.05·7-s + 9-s + (3.27 − 0.508i)11-s + 6.95·13-s − 1.66i·15-s + 1.66i·17-s + 4.44i·19-s − 3.05·21-s − 7.13i·23-s + 2.22·25-s − 27-s − 6.68·29-s − 3.22i·31-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.745i·5-s + 1.15·7-s + 0.333·9-s + (0.988 − 0.153i)11-s + 1.92·13-s − 0.430i·15-s + 0.404i·17-s + 1.01i·19-s − 0.666·21-s − 1.48i·23-s + 0.444·25-s − 0.192·27-s − 1.24·29-s − 0.578i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.914 - 0.403i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.914 - 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2112\)    =    \(2^{6} \cdot 3 \cdot 11\)
Sign: $0.914 - 0.403i$
Analytic conductor: \(16.8644\)
Root analytic conductor: \(4.10662\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2112} (1759, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2112,\ (\ :1/2),\ 0.914 - 0.403i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.012688279\)
\(L(\frac12)\) \(\approx\) \(2.012688279\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + (-3.27 + 0.508i)T \)
good5 \( 1 - 1.66iT - 5T^{2} \)
7 \( 1 - 3.05T + 7T^{2} \)
13 \( 1 - 6.95T + 13T^{2} \)
17 \( 1 - 1.66iT - 17T^{2} \)
19 \( 1 - 4.44iT - 19T^{2} \)
23 \( 1 + 7.13iT - 23T^{2} \)
29 \( 1 + 6.68T + 29T^{2} \)
31 \( 1 + 3.22iT - 31T^{2} \)
37 \( 1 - 8.01iT - 37T^{2} \)
41 \( 1 + 11.2iT - 41T^{2} \)
43 \( 1 + 7.77iT - 43T^{2} \)
47 \( 1 + 8.22iT - 47T^{2} \)
53 \( 1 - 7.44iT - 53T^{2} \)
59 \( 1 - 11.0T + 59T^{2} \)
61 \( 1 + 11.0T + 61T^{2} \)
67 \( 1 - 3.88T + 67T^{2} \)
71 \( 1 + 0.887iT - 71T^{2} \)
73 \( 1 - 16.6iT - 73T^{2} \)
79 \( 1 - 5.08T + 79T^{2} \)
83 \( 1 + 13.9iT - 83T^{2} \)
89 \( 1 + 4.92T + 89T^{2} \)
97 \( 1 - 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.863920242536930330622344759031, −8.517723469616912942913070760236, −7.55630733602473961548635197707, −6.61880259288624593457580770544, −6.10925499181457060245853862072, −5.29221078986253950636859974821, −4.08433351058573943493449549953, −3.63589293975067188576387097605, −2.04027141809634666923161904367, −1.10962425732413203054206994285, 1.08393131918564516548090818514, 1.62462080953453113851506717190, 3.41322254066443150523944467326, 4.33482296633239212411690222460, 5.01641881037632638493810491799, 5.80610096501137048280088858302, 6.60473817994330704850558085321, 7.55394424913135203040313011665, 8.325113979504736938015771706502, 9.100886759487198029324521695834

Graph of the $Z$-function along the critical line