Properties

Label 2-2107-1.1-c3-0-161
Degree $2$
Conductor $2107$
Sign $-1$
Analytic cond. $124.317$
Root an. cond. $11.1497$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.49·2-s + 1.67·3-s − 1.79·4-s − 22.2·5-s − 4.17·6-s + 24.3·8-s − 24.1·9-s + 55.4·10-s − 31.8·11-s − 3.00·12-s + 42.6·13-s − 37.2·15-s − 46.4·16-s − 43.3·17-s + 60.2·18-s − 27.6·19-s + 39.8·20-s + 79.4·22-s − 129.·23-s + 40.9·24-s + 369.·25-s − 106.·26-s − 85.8·27-s − 13.0·29-s + 92.9·30-s − 206.·31-s − 79.4·32-s + ⋯
L(s)  = 1  − 0.880·2-s + 0.322·3-s − 0.223·4-s − 1.98·5-s − 0.284·6-s + 1.07·8-s − 0.895·9-s + 1.75·10-s − 0.874·11-s − 0.0722·12-s + 0.909·13-s − 0.641·15-s − 0.725·16-s − 0.618·17-s + 0.789·18-s − 0.334·19-s + 0.445·20-s + 0.770·22-s − 1.17·23-s + 0.347·24-s + 2.95·25-s − 0.801·26-s − 0.611·27-s − 0.0834·29-s + 0.565·30-s − 1.19·31-s − 0.438·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2107 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2107 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2107\)    =    \(7^{2} \cdot 43\)
Sign: $-1$
Analytic conductor: \(124.317\)
Root analytic conductor: \(11.1497\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2107,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
43 \( 1 + 43T \)
good2 \( 1 + 2.49T + 8T^{2} \)
3 \( 1 - 1.67T + 27T^{2} \)
5 \( 1 + 22.2T + 125T^{2} \)
11 \( 1 + 31.8T + 1.33e3T^{2} \)
13 \( 1 - 42.6T + 2.19e3T^{2} \)
17 \( 1 + 43.3T + 4.91e3T^{2} \)
19 \( 1 + 27.6T + 6.85e3T^{2} \)
23 \( 1 + 129.T + 1.21e4T^{2} \)
29 \( 1 + 13.0T + 2.43e4T^{2} \)
31 \( 1 + 206.T + 2.97e4T^{2} \)
37 \( 1 - 328.T + 5.06e4T^{2} \)
41 \( 1 - 469.T + 6.89e4T^{2} \)
47 \( 1 + 361.T + 1.03e5T^{2} \)
53 \( 1 + 192.T + 1.48e5T^{2} \)
59 \( 1 - 303.T + 2.05e5T^{2} \)
61 \( 1 - 549.T + 2.26e5T^{2} \)
67 \( 1 - 878.T + 3.00e5T^{2} \)
71 \( 1 + 106.T + 3.57e5T^{2} \)
73 \( 1 + 380.T + 3.89e5T^{2} \)
79 \( 1 + 440.T + 4.93e5T^{2} \)
83 \( 1 - 911.T + 5.71e5T^{2} \)
89 \( 1 - 416.T + 7.04e5T^{2} \)
97 \( 1 - 1.23e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.340106699083008632124134447118, −7.88109561662020273459041126257, −7.31408238688927126751665856347, −6.11892566252150041664405611441, −4.94111938302073205531516842580, −4.09275360138318871741095550101, −3.50741153104448800347723854340, −2.31243389515471160137078891895, −0.71645100334853856938345374463, 0, 0.71645100334853856938345374463, 2.31243389515471160137078891895, 3.50741153104448800347723854340, 4.09275360138318871741095550101, 4.94111938302073205531516842580, 6.11892566252150041664405611441, 7.31408238688927126751665856347, 7.88109561662020273459041126257, 8.340106699083008632124134447118

Graph of the $Z$-function along the critical line