Properties

Label 2-2106-13.12-c1-0-54
Degree $2$
Conductor $2106$
Sign $-0.717 + 0.696i$
Analytic cond. $16.8164$
Root an. cond. $4.10079$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s − 3.83i·5-s − 3.36i·7-s i·8-s + 3.83·10-s − 1.99i·11-s + (−2.51 − 2.58i)13-s + 3.36·14-s + 16-s + 2.60·17-s − 1.99i·19-s + 3.83i·20-s + 1.99·22-s − 4.27·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s − 1.71i·5-s − 1.27i·7-s − 0.353i·8-s + 1.21·10-s − 0.600i·11-s + (−0.696 − 0.717i)13-s + 0.900·14-s + 0.250·16-s + 0.630·17-s − 0.456i·19-s + 0.857i·20-s + 0.424·22-s − 0.890·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2106 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.717 + 0.696i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2106 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.717 + 0.696i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2106\)    =    \(2 \cdot 3^{4} \cdot 13\)
Sign: $-0.717 + 0.696i$
Analytic conductor: \(16.8164\)
Root analytic conductor: \(4.10079\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2106} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2106,\ (\ :1/2),\ -0.717 + 0.696i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.190519787\)
\(L(\frac12)\) \(\approx\) \(1.190519787\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
13 \( 1 + (2.51 + 2.58i)T \)
good5 \( 1 + 3.83iT - 5T^{2} \)
7 \( 1 + 3.36iT - 7T^{2} \)
11 \( 1 + 1.99iT - 11T^{2} \)
17 \( 1 - 2.60T + 17T^{2} \)
19 \( 1 + 1.99iT - 19T^{2} \)
23 \( 1 + 4.27T + 23T^{2} \)
29 \( 1 - 8.74T + 29T^{2} \)
31 \( 1 + 5.28iT - 31T^{2} \)
37 \( 1 - 5.08iT - 37T^{2} \)
41 \( 1 - 8.24iT - 41T^{2} \)
43 \( 1 - 10.2T + 43T^{2} \)
47 \( 1 - 4.88iT - 47T^{2} \)
53 \( 1 + 9.16T + 53T^{2} \)
59 \( 1 - 7.31iT - 59T^{2} \)
61 \( 1 + 11.2T + 61T^{2} \)
67 \( 1 + 5.66iT - 67T^{2} \)
71 \( 1 - 1.94iT - 71T^{2} \)
73 \( 1 + 8.41iT - 73T^{2} \)
79 \( 1 + 5.95T + 79T^{2} \)
83 \( 1 + 2.35iT - 83T^{2} \)
89 \( 1 - 6.28iT - 89T^{2} \)
97 \( 1 + 10.3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.621695886485046848313139564305, −7.896611983774669317602090619116, −7.59866337234076407833074576118, −6.33103246411323354787368339452, −5.64340106721139443211853879799, −4.59576774958591035036963989489, −4.40798049289430499239316582809, −3.08604624279658789999108504953, −1.21917425835703811352296963072, −0.45649432733441042269146071010, 1.95337521451477007661418597436, 2.53773428881214272055867916248, 3.33473032653655628895978339421, 4.36043898580011664724198639236, 5.47167929675414834916624813161, 6.24200165571104417467026836861, 7.05779663317484968881926794983, 7.81532171679532690697674164320, 8.795282731386557295879727350535, 9.609542476150854611208946558038

Graph of the $Z$-function along the critical line