L(s) = 1 | + 1.73i·3-s + (1.06 + 6.91i)7-s − 2.99·9-s + 3.07·11-s + 17.8i·13-s + 24.0i·17-s − 32.7i·19-s + (−11.9 + 1.84i)21-s − 24.3·23-s − 5.19i·27-s + 18.6·29-s + 44.2i·31-s + 5.32i·33-s − 37.2·37-s − 30.9·39-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (0.152 + 0.988i)7-s − 0.333·9-s + 0.279·11-s + 1.37i·13-s + 1.41i·17-s − 1.72i·19-s + (−0.570 + 0.0879i)21-s − 1.05·23-s − 0.192i·27-s + 0.643·29-s + 1.42i·31-s + 0.161i·33-s − 1.00·37-s − 0.792·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.152i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.988 + 0.152i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.129244128\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.129244128\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 1.73iT \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-1.06 - 6.91i)T \) |
good | 11 | \( 1 - 3.07T + 121T^{2} \) |
| 13 | \( 1 - 17.8iT - 169T^{2} \) |
| 17 | \( 1 - 24.0iT - 289T^{2} \) |
| 19 | \( 1 + 32.7iT - 361T^{2} \) |
| 23 | \( 1 + 24.3T + 529T^{2} \) |
| 29 | \( 1 - 18.6T + 841T^{2} \) |
| 31 | \( 1 - 44.2iT - 961T^{2} \) |
| 37 | \( 1 + 37.2T + 1.36e3T^{2} \) |
| 41 | \( 1 - 57.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 59.9T + 1.84e3T^{2} \) |
| 47 | \( 1 + 17.6iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 18.8T + 2.80e3T^{2} \) |
| 59 | \( 1 + 85.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 75.7iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 29.6T + 4.48e3T^{2} \) |
| 71 | \( 1 - 47.5T + 5.04e3T^{2} \) |
| 73 | \( 1 + 11.0iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 40.4T + 6.24e3T^{2} \) |
| 83 | \( 1 - 90.4iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 111. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 26.3iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.208554567412211452249092741877, −8.724836258810136486554858977896, −8.031273258965980728933150459538, −6.70630833468484672416505561773, −6.31291920491873718761122049366, −5.20328198840464635535233276741, −4.54426022242127811190170067465, −3.64944980908789734164809767437, −2.54306580429100547565853652227, −1.60147846343117064539958544293,
0.28830398537358920175255672639, 1.22695750002964175770601624984, 2.46261136593999908569967515551, 3.53262601802153297927075823767, 4.33606973416952461679875701848, 5.52407348287747754450028001756, 6.07138900919829287763514008886, 7.21730896868576390275732684283, 7.63849391553955448680509613729, 8.273970241513649288231222565049