L(s) = 1 | + (2.99 − 0.177i)3-s − 2.64i·7-s + (8.93 − 1.06i)9-s + 14.1i·11-s − 20.2i·13-s + 21.8·17-s − 6.93·19-s + (−0.468 − 7.92i)21-s + 7.73·23-s + (26.5 − 4.76i)27-s + 37.3i·29-s + 15.2·31-s + (2.49 + 42.2i)33-s − 12.1i·37-s + (−3.58 − 60.5i)39-s + ⋯ |
L(s) = 1 | + (0.998 − 0.0590i)3-s − 0.377i·7-s + (0.993 − 0.117i)9-s + 1.28i·11-s − 1.55i·13-s + 1.28·17-s − 0.365·19-s + (−0.0223 − 0.377i)21-s + 0.336·23-s + (0.984 − 0.176i)27-s + 1.28i·29-s + 0.493·31-s + (0.0756 + 1.27i)33-s − 0.327i·37-s + (−0.0918 − 1.55i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.919 + 0.393i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.919 + 0.393i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.339129195\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.339129195\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.99 + 0.177i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + 2.64iT \) |
good | 11 | \( 1 - 14.1iT - 121T^{2} \) |
| 13 | \( 1 + 20.2iT - 169T^{2} \) |
| 17 | \( 1 - 21.8T + 289T^{2} \) |
| 19 | \( 1 + 6.93T + 361T^{2} \) |
| 23 | \( 1 - 7.73T + 529T^{2} \) |
| 29 | \( 1 - 37.3iT - 841T^{2} \) |
| 31 | \( 1 - 15.2T + 961T^{2} \) |
| 37 | \( 1 + 12.1iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 42.3iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 16.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 71.8T + 2.20e3T^{2} \) |
| 53 | \( 1 - 101.T + 2.80e3T^{2} \) |
| 59 | \( 1 - 25.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 78.1T + 3.72e3T^{2} \) |
| 67 | \( 1 + 123. iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 34.5iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 100. iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 42.5T + 6.24e3T^{2} \) |
| 83 | \( 1 + 82.1T + 6.88e3T^{2} \) |
| 89 | \( 1 - 42.3iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 48.3iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.753337486193949348125878020256, −8.087639469888316357950388876536, −7.38019203503466465055355732002, −6.88597993557548993597350619969, −5.56484210923601383849828115335, −4.79175293953436707604701922256, −3.74114722981802893696716722713, −3.05759832944366241507524085984, −2.00124897567371725984427132795, −0.880424873785458372253829944710,
1.05804624305588026836638600837, 2.19175724342642136059079700721, 3.11430823865902550378882553353, 3.90795093871432818268320780993, 4.80091089386410270787469132720, 5.92484583337563852302075476682, 6.64904757259919205454080641918, 7.58694286708902028538074005703, 8.412592692775684832952287657101, 8.768619025091758777032023696418